
packetlife.net

VOIP BASICS

Sampling

8000 discrete signal measurements are taken at equal intervals every second

Quantization

The level of each sample is rounded to the nearest expressible value

Encoding

Digital values are encoded as binary numbers for encapsulation

Compression (Optional)

The digital signal is compressed in real time to consume less bandwidth

Voice Codecs						
	MOS	Bandwidth	Complexity	Free		
G.722 SB-ADPCM	4.13	48-64 kbps	Medium	Yes		
G.711 PCM	4.1	64 kbps	Low	Yes		
iLBC	4.1	15.2 kbps	High	Yes		
G.729 CS-ACELP	3.92	8 kbps	High	No		
G.726 ADPCM	3.85	32 kbps	Medium	Yes		
G.729a CS-ACELP	3.7	8 kbps	Medium	No		
G.728 LD-CELP	3.61	16 kbps	High	No		

Signaling Protocols

ITU-T H.323

Originally designed for multimedia transmission over ISDN; mature and widely supported; peer-to-peer call control

Session Initiation Protocol (SIP)

Text-based, similar in nature to HTTP; defined in RFC 3261; peer-to-peer call control

Media Gateway Control Protocol (MGCP)

Employs centralized call control; defined in RFC 3661

Skinny Client Control Protocol (SCCP)

Cisco-proprietary; limited support on gateways; centralized control

Calculating Required Bandwidth

G.711/Ethernet Example

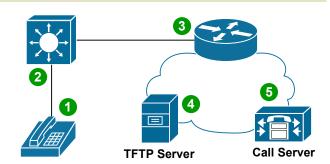
	•		
Codec Payload (Bitrate × Sample Size)	64 Kbps × 20 msec		160 B
L2 Overhead	Ethernet (18) + 802.1Q (4)	+	22 B
L3 Overhead	IP (20)	+	20 B
L4 Overhead	UDP (8) + RTP (12)	+	20 B
Packets per Second	1000 msec / 20 msec	× 5	50 pps
Total Bandwidth		88.8	3 Kbps

Power Over Ethernet (PoE)

Cisco Inline Power (ILP)

Pre-standard; employs a 340 kHz tone to detect devices; power needs communicated via CDP

IEEE 802.3af


Detects power requirements of PoE device by the line resistance present

IEEE 802.3at

Uses LLDP to negotiate delivery of up to 25 watts in .10 W intervals

IEEE 802.3af Classes 0 15.4 W 3 15.4 W 1 4 W 4 Reserved 2 7 W

IP Phone Boot Process

1. Power Over Ethernet (Optional)

Power is supplied via IEEE 802.3af/at or Cisco ILP

2. VLANs Learned via CDP or LLDP

Voice and data VLANs communicated via CDP/LLDP

3. IP Assignment via DHCP

The phone sends a DHCP request in the voice VLAN; the response includes an IP and DHCP option 150

4. Configuration Retrieved via TFTP

The phone retrieves its configuration from one of the TFTP servers specified in the DHCP option

5. Registration

The phone registers with the call server(s) specified in its configuration

Access Switch Port Configuration

interface FastEthernet0/1

! Configure data and voice access VLANs switchport access vlan <VLAN> switchport voice vlan <VLAN>

! Trust ingress QoS markings mls qos trust cos

! Optionally pre-allocate power for the port power inline static [max <wattage>]

by Jeremy Stretch v1.0