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POISSON’S & LAPLACE’S 

EQUATION 

• Two French mathematical physicist Denis Poisson and 

Pierre Simon de Laplace have derived two fundamental 

governing differential equations for electrostatics in any 

medium.  

 

• These equations are very useful mathematical relations 

for the calculation of electric fields and potentials that 

can not be computed by Coulomb’s and Gauss’s law. 
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POISSON’S & LAPLACE’S 

EQUATION 

Consider a continuous distribution of charge in a volume with a charge density . 

Then total charge 


v

dvQ  

The electric flux linked with the surface enclosing this volume by Gauss’s theorem is 
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But, according to Gauss’s divergence theorem, the volume integral of divergence 

of electric field E over a volume V is equal to the surface integral of that field   E over 

the surface S which encloses the given volume i.e. 
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From eq s 1 and 2 
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Poisson’s equation can also be expressed in terms of electric potential V. 

We know that the intensity of electric field is the negative gradient of electric potential i.e.  
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From eq s 4 and 5 
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This is the other form of Poisson's equation. 

If we consider a charge free region then  = 0 

Then eq  4 

equation sLaplace'  thecalled is this
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Cartesian coordinate system 
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Spherical Coordinate System  

Cylindrical Coordinate System 

0
sin

1
sin

sin

11
2

2

22

2

2

2 










































V

r

V

rr

V
r

rr
V

0
2

2

2

2

2

2
2 
















z

V

y

V

x

V
V

2/8/2013 Dr.Aparna Tripathi 



Example: 

V = A z +B 

Using given Conditions V= 0 at z = 0  Provide B = 0  

        V =100 at z =d gives  A = 100/d 

V = 100( z/d ) Volts 
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Since V is not the function of x and y so Laplace’s equation 

reduces to 
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Consider a parallel conductor where V = 0 at z = 0 and V = 100 

Volts at z = d. Calculate potential as a Function of z.  
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