Lecture 5

Electric Force

The electric force between charges q_{1} and q_{2} is
(a) repulsive if charges have same signs
(b) attractive if charges have opposite signs

Like charges repel and opposites attract !!

Coulomb's Law

- Coulomb determined
- Force is attractive if charges are opposite sign
- Force proportional to the product of the charges q_{1} and q_{2} along the lines joining them
- Force inversely proportional square of the distance

$$
\begin{aligned}
& \left|F_{12}\right| \propto\left|Q_{1}\right|\left|Q_{2}\right| / r_{12}^{2} \\
& \left|F_{12}\right|=k\left|Q_{1}\right|\left|Q_{2}\right| / r_{12}^{2}
\end{aligned}
$$

k is normally expressed as $k=1 / 4 \pi \varepsilon_{0}$
where is the permittivity of free space
$k=8.987 .5 \times 10^{9} \mathrm{Nm}^{2} \mathrm{C}^{-2}$

Coulomb's Law

The equation for the magnitude of the Coulomb force between two point charges Q_{1} and Q_{2} in a vacuum is given by

$$
\left|F_{12}\right|=\frac{\left|Q_{1} Q_{2}\right|}{4 \pi \varepsilon_{0} r_{12}^{2}}
$$

where
$\left|Q_{1}\right|$ is the magnitude of the charge Q_{1} in coulombs (C)
$\left|Q_{2}\right|$ is the magnitude of the charge Q_{2} in coulombs (C)
F_{12} is the electrical force acting on the charge Q_{1} due to charge Q_{2} in newtons (N)
r_{12} is the distance between the point charges Q_{1} and Q_{2} in metres (m)
ε_{0} is the permittivity of free space in $\mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
$\frac{1}{4 \pi \varepsilon_{0}}$ is the Coulomb constant in $\mathrm{N} \mathrm{m}^{2} \mathrm{C}^{-2}$.
The direction of the force F_{12} is determined by the sign of the charges; the force is attractive if the charges have opposite signs, and repulsive if the charges have the same sign.

Vector form of Coulomb's Law

Example 8

Two point charges $Q_{1}=50 \mu \mathrm{c}$ and $\mathrm{Q}_{2}=10 \mu \mathrm{c}$ located at $(-1,1,-3) \mathrm{m}$ in $(3,1,0) m$ respectively. Find the force on Q_{1}

$$
\begin{gathered}
\overrightarrow{F_{1}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r^{2}} \widehat{r}_{21} \\
\mathrm{r}=-4 \mathrm{a}_{\mathrm{x}}-3 \mathrm{a}_{z} \\
\vec{r}=\frac{-4 \mathrm{a}_{\mathrm{x}}-3 \mathrm{a}_{\mathrm{z}}}{5} \\
\overrightarrow{F_{1}}=\frac{\left(50 \times 10^{-6}\right)\left(10^{-5}\right)}{4 \pi\left(\frac{10^{-9}}{36 \pi}\right)(5)^{2}}\left(\frac{-4 a_{x}-3 a_{z}}{5}\right)=(.18)\left(-0.8 a_{x}-0.6 a_{z}\right) N \\
\overrightarrow{F_{1}}=\left(0.144 a_{x}-0.108 a_{z}\right) N
\end{gathered}
$$

Electric Field

Electric Field E is defined as the force acting on a test particle divided by the charge of that test particle

Electric Field of a single charge

Charged particles in electric field

Using the Field to determine the force

$$
\mathbf{F}=Q \mathbf{E}
$$

$$
\mathbf{F}=Q \mathbf{E}
$$

ELECTRIC FIELD FROM MULTIPLE CHARGES: SUPERPOSITION PRINCIPLE

 Superposition of forces: $\quad \mathbf{F}=\mathbf{F}_{1}+\mathbf{F}_{2}+\mathbf{F}_{3}+\ldots$Therefore, for the electric field intensity

$$
\mathbf{E}=\mathbf{E}_{1}+\mathbf{E}_{2}+\mathbf{E}_{3}+\ldots
$$

Electric field due to multiple charges Q_{1}, Q_{2}, Q_{3}, etc is a vector sum of the

Electric Flux

-Flux is a measure of the number of field lines passing through an area

- Electric flux is the total number of Electric lines of forces passing normally through a surface in an electric field is called electric flux.
-It is denoted by the letter ϕ.
-Total Electric flux passing through the total surface

$$
\Phi_{E}=\iint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}
$$

Electric field lines passing through a surface of area A, whose normal makes an angle θ with the field.

Electric Flux $x_{2}=\Phi=(E \cos \theta) A=\vec{E} \cdot \vec{A}$

Case I: E is constant vector field perpendicular to planar surface S of area A

$$
\Phi_{E}=\iint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}}
$$

Electric Flux $=\Phi=(\mathrm{E} \cos \theta) \mathrm{A}=\overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{A}}$

$$
\Phi_{E}=+E A
$$

Case II: E is constant vector field directed at angle θ to planar surface S of area A

Electric field lines passing through a surface of area A whose normal makes an angle θ with the field.

$$
\overline{\mathrm{E}} \boldsymbol{\cup} \overline{\mathrm{~A}} \Rightarrow \theta \neq 0
$$

$$
A^{\prime}=A \cos \theta
$$

Where A ' is the perpendicular area to the field E

$$
\begin{aligned}
& \Phi_{E}=\iint \overrightarrow{\mathbf{E}} \cdot d \overrightarrow{\mathbf{A}} \\
& \Phi_{E}=E A \cos \theta
\end{aligned}
$$

Units: $\mathrm{Nm}^{2} / \mathrm{C}$ in SI units, the electric flux is a SCALAR quantity
The value of electric flux is +ve if lines of forces are diverging The value of electric flux is -ve iff lines of forces are converging

Example 9

Find the flux of the vector field $\mathbf{A}=\mathbf{a}_{r} / r^{2}$ out of the sphere $r=a, 0 \leq \theta \leq \pi$, $0 \leq \phi \leq 2 \pi$. We have

$$
\begin{aligned}
& \begin{aligned}
\text { Flux } & =\left.\oiint_{s} \mathbf{A}\right|_{s} \cdot d \mathbf{s} \\
& =\left.\int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} \frac{1}{r^{2}} \mathbf{a}_{r}\right|_{r=a} \cdot \mathbf{a}_{r} a^{2} \sin \theta d \theta d \phi
\end{aligned} \\
& \text { Flux }=\int_{0}^{\pi} \int_{0}^{2 \pi} \sin \theta d \theta d \phi=4 \pi
\end{aligned}
$$

