Lecture 5

Electric Force

The electric force between charges q_1 and q_2 is

(a) repulsive if charges have same signs(b) attractive if charges have opposite signs

Like charges repel and opposites attract !!

Coulomb's Law

- Coulomb determined
 - Force is attractive if charges are opposite sign
 - Force proportional to the product of the charges q_1 and q_2 along the lines joining them
 - Force inversely proportional square of the distance

 $|F_{12}| \propto |Q_1| |Q_2| / r_{12}^2$ $|F_{12}| = k |Q_1| |Q_2| / r_{12}^2$

k is normally expressed as $k = 1/4\pi\varepsilon_0$

where is the permittivity of free space

$$k = 8.987.5 \times 10^9 \,\mathrm{Nm^2 C^{-2}}$$

Dr. Aparna Tripathi

Coulomb's Law

The equation for the magnitude of the Coulomb force between two point charges Q_1 and Q_2 in a vacuum is given by

$$|\mathbf{F}_{12}| = \frac{|Q_1 Q_2|}{4\pi\varepsilon_0 r_{12}^2}$$

where

- $|Q_1|$ the magnitude of the charge Q_1 in coulombs (C) ÌS-
- $|Q_2|$ is the magnitude of the charge Q_2 in coulombs (C)
- the electrical force acting on the charge Q_1 due to charge Q_2 in newtons (N) F_{12} is –
- the distance between the point charges Q_1 and Q_2 in metres (m) ÌS r_{12}
- the permittivity of free space in $C^2 N^{-1} m^{-2}$ is ε_0
- $\frac{1}{4\pi\varepsilon_0}$ is the Coulomb constant in N $m^2 C^{-2}$.

The direction of the force \mathbf{F}_{12} is determined by the sign of the charges; the force is attractive if the charges have opposite signs, and repulsive if the charges have the same sign. 2/8/2013

Vector form of Coulomb's Law

Example 8

Two point charges $Q_1 = 50 \ \mu c$ and $Q_2 = 10 \ \mu c$ located at (-1,1,-3) m in (3,1,0) m respectively. Find the force on Q_1

$$\vec{F}_1 = (0.144a_x - 0.108a_z)N$$

Electric Field

Electric Field E is defined as the force acting on a test particle divided by the charge of that test particle

Charged particles in electric field

Using the Field to determine the force

ELECTRIC FIELD FROM MULTIPLE CHARGES: SUPERPOSITION PRINCIPLE

Superposition of forces: $\mathbf{F} = \mathbf{F}_1 + \mathbf{F}_2 + \mathbf{F}_3 + \dots$

Therefore, for the electric field intensity

$$\mathbf{E} = \mathbf{E}_1 + \mathbf{E}_2 + \mathbf{E}_3 + \dots$$

Electric field due to multiple charges Q₁, Q₂, Q₃, etc is a **vector** sum of the electric fields due to each of the charges

Electric Flux

•Flux is a measure of the number of field lines passing through an area

•Electric flux is the total number of Electric lines of forces passing normally through a surface in an electric field is called electric flux.

- •It is denoted by the letter ϕ .
- Total Electric flux passing through

the total surface

$$\Phi_E = \iint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}}$$

Electric field lines passing through a surface of area A, whose normal makes an angle θ with the field. Electric Flux = $\Phi = (E \cos \theta)A = \vec{E} \cdot \vec{A}$

Case I: E is constant vector field perpendicular to planar surface S of area A

Case II: E is constant vector field directed at angle θ to planar surface S of area A

Electric field lines passing through a surface of area A whose normal makes an angle θ with the field.

 $\bar{\mathbf{E}} \, \mathbf{M} \, \bar{\mathbf{A}} \Rightarrow \, \mathbf{\theta} \neq \mathbf{0}$

 $A' = A \cos \theta$ Where A ' is the perpendicular area to the field E

$$\Phi_E = \iint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}}$$

 $\Phi_E = EA\cos\theta$

Units: Nm²/C in SI units, the electric flux is a SCALAR quantity

The value of electric flux is +ve if lines of forces are diverging The value of electric flux is -ve if lines of forces are converging

Example 9

Find the flux of the vector field $\mathbf{A} = \mathbf{a}_r/r^2$ out of the sphere r = a, $0 \le \theta \le \pi$, $0 \le \phi \le 2\pi$. We have

Flux =
$$\iint_{s} \mathbf{A} \Big|_{s} \cdot d\mathbf{s}$$

= $\int_{\theta=0}^{\pi} \int_{\phi=0}^{2\pi} \frac{1}{r^{2}} \mathbf{a}_{r} \Big|_{r=a} \cdot \mathbf{a}_{r} a^{2} \sin \theta \, d\theta \, d\phi$,
Flux = $\int_{0}^{\pi} \int_{0}^{2\pi} \sin \theta \, d\theta \, d\phi = 4\pi$.