Lecture 12

Poynting vector and Poynting theorem

The production and propagation of electromagnetic waves

- Let's put them both together: we obtain changing electric and magnetic fields that continuously produce each other!

The oscillating charges in the antenna set up electric and magnetic fields.

Power in a wave

- A wave carries power and transmits it's power wherever it goes

- The rate of flow of energy per
 unit area in wave is given by the Poynting vector.
-Symbolized by vector S

$$
\vec{S}=\vec{E} \times \vec{H}
$$

Poynting Vector Derivation

Taking scalar product of Maxwell 's eq 3 with H and eq 4 with E

$$
\begin{aligned}
& H \cdot \nabla \times E=-H \cdot \frac{\partial B}{\partial t} \\
& \mathrm{E} \cdot(\nabla \times \mathrm{H})=\mathrm{E} \cdot \mathrm{~J}+\mathrm{E} \cdot \frac{\partial D}{\partial t} \quad \ldots .2
\end{aligned}
$$

Subtracting eq 2 from eq 1

$$
\begin{align*}
& H \cdot \nabla \times E-\mathrm{E} \cdot(\nabla \times \mathrm{H})=-H \cdot \frac{\partial B}{\partial t}-\mathrm{E} \cdot \mathrm{~J}-\mathrm{E} \cdot \frac{\partial D}{\partial t} \\
& H \cdot \nabla \times E-\mathrm{E} \cdot(\nabla \times \mathrm{H})=-\left[H \cdot \frac{\partial B}{\partial t}+\mathrm{E} \cdot \frac{\partial D}{\partial t}\right]-\mathrm{E} \cdot \mathrm{~J}
\end{align*}
$$

Now using vector identity

$$
\begin{aligned}
& \nabla \cdot(A \times B)=B \cdot(\nabla \times A)-A \cdot(\nabla \times B) \text { or in this case : } \\
& \nabla \cdot(E \times H)=H \cdot(\nabla \times E)-E \cdot(\nabla \times H)
\end{aligned}
$$

Eq 3 can be written as

$$
\nabla \cdot(E \times \mathrm{H})=-\left[H \cdot \frac{\partial B}{\partial t}+\mathrm{E} \cdot \frac{\partial D}{\partial t}\right]-\mathrm{E} \cdot \mathrm{~J}
$$

Using relation $B=\mu H$ and $D=\varepsilon E$, in eq 4

$$
\begin{align*}
\nabla \cdot(E \times \mathrm{H}) & =-\left[H \cdot \frac{\partial(\mu H)}{\partial t}+\mathrm{E} \cdot \frac{\partial(\varepsilon E)}{\partial t}\right]-\mathrm{E} \cdot \mathrm{~J} \\
& =-\mu H \cdot \frac{\partial H}{\partial t}-\varepsilon \mathrm{E} \cdot \frac{\partial E}{\partial t}-\mathrm{E} \cdot \mathrm{~J}
\end{align*}
$$

But

$$
H \cdot \frac{\partial H}{\partial t}=\frac{1}{2} \frac{\partial(H)^{2}}{\partial t} \quad \text { and } \quad E \cdot \frac{\partial E}{\partial t}=\frac{1}{2} \frac{\partial(E)^{2}}{\partial t}
$$

$$
{ }_{3 / 7 / 2013} \nabla \cdot(E \times \mathrm{H})=-\frac{\mu}{2} \frac{\partial(H)^{2}}{\partial t \cdot A p a m m a t i p a t h i r} \frac{\varepsilon}{\partial t} \frac{\partial(E)^{2}}{\partial t}-\mathrm{E} \cdot \mathrm{~J}
$$

$$
\nabla \cdot(E \times \mathrm{H})=\frac{\partial}{\partial t}\left[\frac{\mu H^{2}}{2}+\frac{\varepsilon E^{2}}{2}\right]-\mathrm{E} \cdot \mathrm{~J} \quad \ldots 6
$$

Now integrating eq 6 over a volume V bounded by surface S

$$
\int_{v} \nabla \cdot(E \times H) d v=-\frac{\partial}{\partial t} \int_{v}\left(\frac{\varepsilon}{2} E^{2}+\frac{\mu}{2} H^{2}\right) d v-\int_{v} E \cdot J d v \ldots 7
$$

Using Gauss Divergence theorem $\int \nabla \cdot(E \times H) d v=\oint(E \times H) d s$
Eq 7 becomes

$$
\oint_{S}(E \times H) \cdot d S=-\frac{\partial}{\partial t} \int_{v}\left(\frac{\varepsilon}{2} E^{2}+\frac{\mu}{2} H^{2}\right) d v-\int_{v} E \cdot J d v, \ldots 9
$$

Which means that the total power coming out of a volume is either dudue to the electric or magnetic fifeld energy variations or is lost in ohmic losses.

Poynting Vector

- Waves carry energy and information
- Poynting says that the net power flowing out of a given volume is = to the decrease in time in energy stored minus the conduction losses.

$$
\vec{S}=\vec{E} \times \vec{H} \quad\left[\mathrm{~W} / \mathrm{m}^{2}\right]
$$

- The Poynting vector has the same direction as the direction of propagation.

Poynting Vector for an em wave

 propagating in free space$$
\vec{S}=\vec{E} \times \vec{H}=\vec{E} \times \frac{\hat{n} \times \vec{E}}{\mu_{0} c}=\frac{1}{\mu_{0} c} \vec{E} \times \hat{n} \times \vec{E}
$$

$$
=\frac{1}{\mu_{0} c}(\vec{E} \cdot \vec{E}) \hat{n}-(\vec{E} \cdot \hat{n}) \vec{E}
$$

$$
=\frac{1}{\mu_{0} c} \vec{E}^{2} \hat{n}
$$

$$
\because(\vec{E} \cdot \hat{n}=0, E \text { being } \perp \text { to } \hat{n})
$$

$$
=\frac{\vec{E}^{2}}{Z_{0}} \hat{n}
$$

For a plane em wave of angular frequency, ω the average value of S over a complete cycle is given by

$$
\begin{aligned}
\langle S\rangle & =\frac{\left\langle\vec{E}^{2}\right\rangle}{Z_{0}} \hat{n}=\frac{\left\langle E_{0} e^{(i \vec{k} \cdot \vec{r}-i \omega t)^{2}}\right\rangle_{\text {real }}}{Z_{0}} \hat{n} \\
& =\frac{1}{Z_{0}} E_{0}^{2}\left\langle\cos ^{2}(\omega t-\vec{k} \cdot \vec{r})\right\rangle \hat{n}
\end{aligned}
$$

Average is obtained by integrating over a time period and dividing by T

$$
\begin{array}{ll}
=\frac{1}{Z_{0}} \frac{E_{0}^{2}}{2} \hat{n} & \left\langle\cos ^{2}(\omega t-\vec{k} \cdot \vec{r})\right\rangle=1 / 2 \\
=\frac{1}{Z_{0}} E_{r m s} \hat{n} & E_{r m s}=\frac{E_{0}}{\sqrt{2}}
\end{array}
$$

The direction of Poynting vector is along the direction of propagation of em waver雨dis means that the flow of remprecy finanplane em wave in free space is along the direction of wave

The Poynting Vector

Energy transport is defined by the Poynting vector S as:

The direction of S is the direction of propagation of the wave

$$
S=\frac{E B}{\mu_{0}}=\frac{E^{2}}{\mu_{0} c}=\frac{E^{2}}{Z_{0}}=\frac{E^{2}}{377 \Omega}
$$

Electrostatic Boundary Conditions

- At any point on the boundary,
- the components of E_{1} and E_{2} tangential to the boundary are equal

$$
E_{1 t}=E_{2 t}
$$

- the components of \boldsymbol{D}_{1} and \boldsymbol{D}_{2} normal to the boundary are equal

$$
\underbrace{}_{\text {Dr. Aparna Tripathi }}=D_{2 t}
$$

Magnetic Boundary Conditions

- The normal component of \boldsymbol{B}_{1} and $\boldsymbol{B}_{\mathbf{2}}$ continuous across a interface:

$$
B_{1 n}=B_{2 n}
$$

- The tangential component of a $\boldsymbol{H}_{\mathbf{1}}$ and \boldsymbol{H}_{2} to the boundary are equal

$$
H_{1 t}=H_{2 t}
$$

Hayt p-281

Reflection and Transmission of Waves at Planar Interfaces

Normal Incidence

- Consider both medium 1 and medium 2
- Let us place the boundary between the two media in the $z=0$ plane, and consider an incident plane wave which is traveling in the $+z$ direction.
- we assume that the electric field of the incident wave is in the x-direction.

Normal Incidence

Normal Incidence

- Incident wave

$$
\begin{aligned}
& \bar{E}_{i}=\hat{a}_{x} E_{i 0} e^{-j \beta_{1} z} \\
& \bar{H}_{i}=\frac{1}{\eta_{1}} \hat{a}_{z} \times \bar{E}_{i}=\hat{a}_{y} \frac{E_{i 0}}{\eta_{1}} e^{-j \beta_{1} z} \\
& \beta_{1}=\omega \sqrt{\varepsilon_{1} \mu_{1}} \quad \eta_{1}=\sqrt{\frac{\mu_{1}}{\varepsilon_{1}}}
\end{aligned}
$$

Normal Incidence

- Reflected wave

unknown

$$
\begin{aligned}
& \bar{E}_{r}=\hat{a}_{x} E_{r 0} e^{+j \beta_{1} z} \\
& \bar{H}_{r}=\frac{1}{\eta_{1}}\left(-\hat{a}_{z}\right) \times \bar{E}_{r}=-\hat{a}_{y} \frac{E_{r 0}}{\eta_{1}} e^{+j \beta_{1 z} z}
\end{aligned}
$$

Normal Incidence

- Transmitted wave

unknown

$$
\begin{aligned}
& \bar{E}_{t}=\hat{a}_{x} E_{t 0} e^{-j \beta_{2} z} \\
& \bar{H}_{t}=\frac{1}{\eta_{2}} \hat{a}_{z} \times \bar{E}_{t}=\hat{a}_{y} \frac{E_{t 0}}{\eta_{2}} e^{-j \beta_{2} z} \\
& \beta_{2}=\omega \sqrt{\varepsilon_{2} \mu_{2}} \quad \eta_{2}=\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}}
\end{aligned}
$$

Normal Incidence

- The total electric and magnetic fields in medium 1 are

$$
\begin{aligned}
& \bar{E}_{1}=\bar{E}_{i}+\bar{E}_{r}=\hat{a}_{x}\left[E_{i 0} e^{-j \beta_{1} z}+E_{r 0} e^{+j \beta_{1} z}\right] \\
& \bar{H}_{1}=\bar{H}_{i}+\bar{H}_{r}=\hat{a}_{y}\left[\frac{E_{i 0}}{\eta_{1}} e^{-j \beta_{1} z}-\frac{E_{r 0}}{\eta_{1}} e^{+j \beta_{1} z}\right.
\end{aligned}
$$

Normal Incidence

- The total electric and magnetic fields in medium 2 are

$$
\begin{aligned}
& \bar{E}_{2}=\bar{E}_{t}=\hat{a}_{x} E_{t 0} e^{-j \beta_{2} z} \\
& \bar{H}_{2}=\bar{H}_{t}=\hat{a}_{y} \frac{E_{t 0}}{\eta_{2}} e^{-j \beta_{2} z}
\end{aligned}
$$

Normal Incidence

- To determine the unknowns $E_{r 0}$ and $E_{t 0}$, we must enforce the BCs at $z=0$:

$$
\begin{aligned}
& \bar{E}_{1}(z=0)=\bar{E}_{2}(z=0) \\
& \bar{H}_{1}(z=0)=\bar{H}_{2}(z=0)
\end{aligned}
$$

Normal Incidence)

- From the BCs we have
or

$$
\begin{aligned}
& E_{i 0}+E_{r 0}=E_{t 0} \\
& \frac{E_{i 0}}{\eta_{1}}-\frac{E_{r 0}}{\eta_{1}}=\frac{E_{t 0}}{\eta_{2}}
\end{aligned}
$$

$$
E_{r 0}=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}} E_{i 0}, \quad E_{t 0}=\frac{2 \eta_{2}}{\eta_{2}+\eta_{1}} E_{i 0}
$$

Reflection and Transmission Coefficients

- Define the reflection coefficient as

$$
\Gamma=\frac{E_{r 0}}{E_{i 0}}=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}
$$

- Define the transmission coefficient as

$$
\tau=\frac{E_{t 0}}{E_{i 0}}=\frac{2 \eta_{2}}{\eta_{2}+\eta_{1}}
$$

Oblique Incidence

$$
z=0
$$

Perpendicular Polarization

$$
\overrightarrow{\boldsymbol{E}}_{\boldsymbol{E}}
$$

B.C.'s at $z=0$

1) $\bar{E}_{t a n}$ coutinuous $\left(\overline{E_{i}}+\overline{E_{r}}=\overline{E_{t}}\right)$

$$
\begin{aligned}
& \overline{E_{i}}=\bar{y} E_{i} \exp \left(-j \beta_{1 x} x\right) \exp \left(-j \beta_{1 z} z\right) \\
& \overline{E_{r}}=\bar{y} \Gamma E_{i} \exp \left(-j \beta_{r x} x\right) \exp \left(j \beta_{r z} z\right) \\
& \overline{E_{t}}=\bar{y} \tau E_{i} \exp \left(-j \beta_{2 x} x\right) \exp \left(-j \beta_{2 z} z\right)
\end{aligned}
$$

$$
\begin{equation*}
\exp \left(-j \beta_{1 x} x\right)+\Gamma \exp \left(-j \beta_{r x} x\right)=\tau \exp \left(-j \beta_{2 x} x\right) \tag{A}
\end{equation*}
$$

$$
\begin{align*}
& \beta_{1 x}=\beta_{r x}=\beta_{2 x} \\
& \quad 1+\Gamma=\underset{\text { Dr.Aparma Tripathi }}{\tau} \tag{B}
\end{align*}
$$

B.C.'s at $\mathrm{z}=0$

2) $\bar{H}_{\tan }$ continuous $\left(\bar{H}_{i}+\bar{H}_{r}=\bar{H}_{t}\right)$
$-\frac{\cos \theta_{i}}{\eta_{1}}+\frac{\cos \theta_{i}}{\eta_{1}} \Gamma=-\frac{\cos \theta_{t}}{\eta_{2}} \tau$

With $1+\Gamma=\tau$,
reflection coefficient

$$
\Gamma_{\perp}=\frac{\eta_{2} / \cos \theta_{t}-\eta_{1} / \cos \theta_{i}}{\eta_{2} / \cos \theta_{t}+\eta_{1} / \cos \theta_{i}}
$$

transmission coefficient

Parallel Polarization

$\mathrm{E}=\mathrm{H} \eta$

$\overline{E_{i}}=\left(\bar{x} \cos \theta_{i}-\bar{z} \sin \theta_{i}\right) H_{i} \eta_{1} \exp \left(-j \beta_{1 x} x\right) \exp \left(-j \beta_{1 z} z\right)$
$\overline{E_{r}}=\left(-\bar{x} \cos \theta_{r}-\bar{z} \sin \theta_{r}\right) H_{r} \eta_{1} \exp \left(-j \beta_{r x} x\right) \exp \left(j \beta_{r z} z\right)$

$$
\frac{H_{r}}{H_{i}}=-\Gamma \quad \frac{H_{t}}{H_{i}}=\frac{1 / \eta_{2}}{E_{i} /}=\tau \frac{\eta_{1}}{\eta_{2}}
$$

B.C.'s at $\mathrm{z}=0$

1) $\bar{H}_{\tan }$ coutinuous $\left(\bar{H}_{i}+\bar{H}_{r}=\bar{H}_{t}\right)$

$$
\begin{aligned}
& \overline{H_{i}}=\bar{y} H_{i} \exp \left(-j \beta_{1 x} x\right) \exp \left(-j \beta_{1 z} z\right) \\
& \overline{H_{r}}=\bar{y} H_{r} \exp \left(-j \beta_{r x} x\right) \exp \left(j \beta_{r z} z\right) \\
& \overline{H_{t}}=\bar{y} H_{t} \exp \left(-j \beta_{2 x} x\right) \exp \left(-j \beta_{2 z} z\right)
\end{aligned}
$$

$$
\begin{gathered}
\exp \left(-j \beta_{1 x} x\right)-\Gamma \exp \left(-j \beta_{x x} x\right)=\frac{\eta_{1}}{\eta_{2}} \tau \exp \left(-j \beta_{2 x} x\right) \\
\beta_{1 x}=\beta_{r x}=\beta_{2 x} \\
1-\Gamma=\frac{\eta_{1}}{\eta_{2}} \quad \ldots .(\mathbf{A})
\end{gathered}
$$

B.C.'s at $z=0$
2) $\bar{E}_{\text {an }}$ continuous
tan

reflection coefficient

transmission coefficient

