Physics-II (PH211)

Instructor

Dr. Aparna Tripathi, Physics Dept.

Room: Physics Dept. Faculty Room
email: aparna.misra@jiet.ac.in

SYLLABUS

Electromagnetism

Thermodynamics

Elements of Quantum Mechanics

Solid State Physics

Reference Books

Electromagnetism :- Electromagnetics (Schaum's Outline Series) By: J. A.Edminister Pub: Tata McGraw Hill

Thermodynamics :- Basic \& Applied Thermodynamics By: P.K. Nag
Pub: Tata McGraw Hill

Elements of Quantum Mechanics:- Perspectives of Modern Physics By: A. Beiser,
Pub: Mc Graw Hill International
Solid State Physics:- Solid State Physics
By: S. O. Pillai
Pub: New Age International Publishers

Test details

Electromagnetism

Thermodynamics $1 / 2$ part

Elements of Quantum Mechanics

Electromagnetism

Lecture 1

Scalars and Vectors

Scalar

- Require only the magnitude for their specification.
- Examples: mass, volume, energy, time, length, speed temperature, charge, current ect.

Vector

- Require both the magnitude and the direction for their specification.
- Examples: Displacement, velocity, acceleration, electric field, momentum, force ect.

Vector Notation

Vectors are denoted as a symbol with an arrow over the Top and Bold font

It is also written as $\vec{A}=A \hat{a}$
Where A is $|\mathrm{A}|$ which is the magnitude and \hat{a} is unit vector

$$
\vec{A}=A_{x} \hat{a}_{x}+A_{y} \hat{a}_{\mathrm{y}}+\mathrm{A}_{\mathrm{z}} \hat{\mathrm{a}}_{\mathrm{z}}
$$

Where
A_{x} - Magnitude of \bar{A} in x direction
A_{y} - Magnitude of \bar{A} in y direction
A_{z} - Magnitude of \bar{A} in z direction

Modulus or Magnitude of \bar{A} is given by

$$
\mathbf{I} \vec{A} I=\underset{\text { Leture }}{\sqrt{ }\left(\mathbf{A}_{\text {by }}{ }^{2}+\underset{\text { Dr Apa }}{ } \mathbf{A}^{2}{ }^{2}+\mathbf{A}_{\text {Tipatif }}{ }^{2}\right)}
$$

UNIT VECTORS

- A unit vector along A is defined as a vector whose magnitude is unity(i.e 1) and its direction is along A
-It can be written as \hat{a} or a_{A}

$$
\begin{aligned}
& \hat{a}_{A}=\frac{\vec{A}}{|\vec{A}|} \\
& \text { thus } \mathrm{A}=\vec{A} \hat{a}_{A}
\end{aligned}
$$

For All unit vectors

$$
\vec{a}_{A}=\frac{A_{x} \hat{a}_{x}+A_{y} \hat{a}_{y}+A_{z} \hat{a}_{z}}{\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}}
$$

* Magnitude is Unity

VECTOR ALGEBRA

- VECTOR ADDITION
-VECTOR SUBSTRACTION
-VECTOR MULTIPLICATION

VECTOR ADDITION

-The sum of two vectors for example vector A and B can be obtain by moving one of them so that its terminal points (tip) coincide with the initial point (tail) of the other

Arrange the vectors in a head to tailectare $\operatorname{bigin}_{\text {Aparna }}$ Tripath $^{\text {th }}$ the head of the last vector.

VECTOR SUBSTRACTION

-Vector subtraction is carried out by

Flip one vector.
Then proceed to add the vectors

$$
\vec{C}=\vec{A}-\vec{B}=\vec{A}+(-\vec{B})
$$

The resultant is drawn from the tail of the first to the head of the last

VECTOR MULTIPLICATION

- Vector multiplied by a scalar yielding a vector output
-Scalar (dot) product (A.B) [Vector multiplied by a vector yielding a scalar output (Dot product)]
- Vector (cross) product (A x B) [Vector multiplied by a vector yielding a vector output (Cross product)]

Multiplication of a vector by a scalar

-Let vector A is multiplied by scalar quantity k
-Then the magnitude becomes k times of the A and the direction will remains same if $k=+v e$ and reverse if $k=-v e$

$$
\vec{B}=k \vec{A}
$$

$$
\begin{array}{ll}
\mathrm{k}>0 & \text { + ve same direction } \\
\mathrm{k}<0 & \text {-ve opposite direction } \\
1<\mathrm{k} & \text { Magnitude increases }
\end{array}
$$

SCALAR PRODUCT

-The dot product of two vectors A and B, written as $A \cdot B$ and is defined as the magnitude A and B, and the projection of A onto B (or vise versa).
-Thus

$$
\mathrm{A} \bullet \mathrm{~B}=|\mathrm{A} \| \mathrm{B}| \cos \theta
$$

Where θ is an acute angle between the A and B

- If $\theta=0$ then dot product

$$
\vec{A} \cdot \vec{B}=A B
$$

- If $\theta=90^{\circ}$ then dot product

$$
\vec{A} \cdot \vec{B}=\mathbf{0}
$$

Properties

$$
\begin{array}{ll}
\mathbf{a}_{\mathrm{x}} \bullet \mathbf{a}_{\mathrm{y}}=0 & a_{\mathrm{x}} \bullet \mathbf{a}_{\mathrm{x}}=1 \\
\mathbf{a}_{\mathrm{y}} \bullet \mathbf{a}_{\mathrm{z}}=0 & \mathbf{a}_{\mathrm{y}} \bullet \mathbf{a}_{\mathrm{y}}=1 \\
\mathbf{a}_{\mathrm{z}} \bullet \mathbf{a}_{\mathrm{a}}=0 & a_{\mathrm{z}} \bullet \mathbf{a}_{\mathrm{z}}=1
\end{array}
$$

VECTOR PRODUCT

-The cross product of two vectors A and B, written as

$$
\mathrm{A} \times \mathrm{B}=|\mathrm{A}||\mathrm{B}| \sin \theta \mathrm{a}
$$

Where a is an unit vector perpendicular to the plane that contains the two vectors. The direction of a is taken as the direction of the right thumb (using right hand rule)

Vector Multiplication : Right Hand Rule

Index finger in the direction of the first vector.

Middle finger in the direction of the second vector

Thumb points in the direction of the - cross product.

WARNING: Make sure you are using your right hand!!!

COMPONENTS OF A VECTOR

- A direct application of vector product is in determining the projection (or component) of a vector in a given direction. The projection can be scalar or vector.
- Given a vector \mathbf{A}, we define the scalar component $A B$ of \mathbf{A} along vector \mathbf{B} as

$$
A_{B}=A \cdot a_{B}=\frac{A \cdot B}{|B|}
$$

DOT PRODUCT

If $\vec{A}=\left(A_{x}, A_{y}, A_{z}\right)$ and $\vec{B}=\left(B_{x}, B_{y}, B_{z}\right)$ then

$$
\vec{A} \bullet \vec{B}=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}
$$

which is obtained by multiplying A and B component by component.

- It follows that modulus of a vector is

$$
|\vec{A}|=\sqrt{\vec{A} \bullet \vec{A}}=\sqrt{A_{x}{ }^{2}+A_{y}{ }^{2}+A_{z}{ }^{2}}
$$

CROSS PRODUCT

If $\mathbf{A}=\left(\mathrm{A}_{x}, A_{y}, A_{z}\right), \mathbf{B}=\left(B_{x}, B_{y}, B_{z}\right)$ then
$\vec{A} \times \vec{B}=\left|\begin{array}{ccc}a_{x} & a_{y} & a_{z} \\ A_{x} & A_{y} & A_{z} \\ B_{x} & B_{y} & B_{z}\end{array}\right|$
$=\left|\begin{array}{ll}A_{y} & A_{z} \\ B_{y} & B_{z}\end{array}\right| a_{x}+\left|\begin{array}{cc}A_{z} & A_{x} \\ B_{z} & B_{x}\end{array}\right| a_{y}+\left|\begin{array}{cc}A_{x} & A_{y} \\ B_{x} & B_{y}\end{array}\right| a_{z}$
$=\left(A_{y} B_{z}-A_{z} B_{y}\right) a_{x}+\left(A_{z} B_{x}-A_{x} B_{z}\right) a_{y}+\left(A_{x} B_{y}-A_{y} B_{x}\right) a_{z}$

CROSS PRODUCT

Cross product of the unit vectors yield:

$$
\begin{aligned}
& \mathbf{a}_{\mathrm{x}} \times \mathbf{a}_{\mathrm{y}}=\mathbf{a}_{\mathrm{z}} \\
& \mathbf{a}_{\mathrm{y}} \times \mathbf{a}_{\mathrm{z}}=\mathbf{a}_{\mathrm{x}} \\
& \mathbf{a}_{\mathrm{z}} \times \mathbf{a}_{\mathrm{a}}=\mathbf{a}_{\mathrm{y}}
\end{aligned}
$$

