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Knowledge-based configuration is a successful application of Artificial Intelligence approaches in industry (e.g. 
telecommunication industry, financial services, or automotive industry). The increasing complexity of configurable 
products and services necessitated improved expressiveness and maintainability of knowledge representation languages 
empowering the development and maintenance of large and complex configuration knowledge bases. Within the context of 
such configuration projects, the effective integration of effort estimation techniques considering the peculiarities of 
configuration system development is still an open issue. We discuss the application of Function Point Analysis (FPA) (a 
standard Software Engineering method for determining implementation efforts) in the context of knowledge-based 
configuration projects and present a framework for a company-specific implementation. 
 
Significance: extension of the scope of Software Engineering effort estimation approaches to the development of 

knowledge-based configuration systems. 
 
Keywords: knowledge-based configuration, project management, effort estimation. 
 
 

1. INTRODUCTION 
Configuration can be seen as a special kind of design activity [12], where the final product is built of a predefined set of 
component types and attributes, which can be composed conforming to a set of corresponding constraints. Configuration 
systems are of strategic importance for enterprises dealing with highly variant products and services, e.g. response and 
delivery times to the customer are reduced and invalid orders can be prevented by automatically checking the customer 
requirements w.r.t. given marketing constraints, technical constraints and constraints related to production processes.  

Since the development of the product and the product configurator has to be done concurrently, configurator development- 
and maintenance time is strictly limited, i.e. the implementation of configuration systems is a critical task and organizations 
dealing with the provision of highly variant products and services recognize the importance of available measures for 
analysing the efforts associated with the development and maintenance of configuration systems. Effort estimation is a 
crucial factor when determining the feasibility of a project, creating an offer, or managing resources. As a rule, 
configuration systems are not standalone systems but have to be integrated into already existing software environments. In 
this context project managers implementing configuration applications should not be forced to apply additional effort 
estimation methods but rather be instructed how to effectively apply conventional Software Engineering approaches to 
knowledge-based systems development. However, within the context of configuration projects, the effective integration of 
effort estimation techniques considering the peculiarities of configurator development is still an open issue.  

In this paper we sketch how Function Point Analysis (FPA) [1,2] can be applied to effort estimation in knowledge-based 
configuration systems development. FPA is based on a user- (requirements-) centered view on the software and is platform-
independent. The method has first been proposed by [2] with the goal to provide an effort measure for the functional size of 
software - together with the counting rules it has been adapted several times. Currently, it is maintained by the International 
Function Point Users Group (IFPUG). Using FPA we can determine the implementation efforts related to a project 
(development of knowledge base, development of user interface, development of interfaces to remote applications, e.g. 
product catalogs or online sales applications). Applying FPA to configuration software development extends the scope of 
Software Engineering estimation approaches to knowledge-based system development. Thus knowledge-based systems 
development is made transparent within industrial software development processes and effort estimation for traditional 
software development projects is integrated with effort estimation for knowledge-based software development projects.  

 
 



 

The remainder of the paper is organized as follows. In Section 2 we discuss and exemplify basic principles of knowledge-
based configuration. In Section 3 we present an effort estimation process applicable to configuration system development. 
In Section 4 we show under which conditions FPA can be applied to effort estimation in configurator development. In 
Section 5 we discuss issues related to the application of the presented concepts. Section 6 contains related work.  

 
2. CONFIGURATION KNOWLEDGE REPRESENTATION 

As pointed out in [16] the modeling of configuration knowledge is a critical task - any framework must address the issues 
of expressiveness and representational power and provide mechanisms for coping with the high rate at which knowledge 
changes. In many cases the used description languages for building configuration knowledge bases are not integrated into 
industrial software development processes. These description languages are difficult to communicate to domain experts 
which makes it demanding for software development departments to incorporate such technologies into their standard 
development process. For the realization of configuration systems the Unified Modeling Language (UML, [11]) can be 
used as notation in order to simplify the construction of a configuration knowledge base [6]. The usage of UML for 
configuration knowledge representation makes sense for the following reasons:  

• UML is widely applied as standard design language in industrial software development.  

• UML is extensible for domain-specific purposes, i.e. (using profiles) the semantics of the basic modeling concepts 
can be further refined in order to be able to provide domain-specific modeling concepts (e.g. modeling concepts 
for the configuration domain).  

• UML has a built-in constraint language (the Object Constraint Language (OCL) [15]). UML and OCL are the 
perfect combination of representation concepts for designing configuration applications.  

In the following the simple UML configuration model of Figure 1 will serve as working example in order to show the 
application of the presented effort estimation concepts1.  
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// BR 1: Pentium CPU requires Intel-Xeon motherboard
context MB inv: self.CPU->select(oclIsTypeOf(Pentium))->count>0 
                           implies self.oclIsTypeOf(Intel-Xeon)

// BR 2: The needed software installation capacity must   
             not exceed prov ided HD capacity
context Computer inv : self.Software.neededcapacity->sum <=  
                                     self.HDUnit.capacity->sum

name: MWord, price: 200, ..., hasspellchecker: true
name: UltraEdit, price: 40, ..., hasspellchecker: false ...

name: Pentium, price: 250, ..., clockrate: 2048
name: 486, price: 40, ..., clockrate: 120 ...

name: Socket-A, ...
name: Intel-Xeon, ...

 

Figure 1: Example configuration model 

This model represents the generic product structure, i.e. all possible variants of a configurable computer. The basic 
structure of the product is modeled using component types (basic building blocks the final product can be built of), 
generalization hierarchies, aggregations and interfaces to different product catalogs2. The set of possible products is 
restricted through a set of business rules (BR1, BR2 in Figure 1) related to technical restrictions, economic factors and 
restrictions according to the production process. Such a generic description of a product structure can also be denoted as 
domain description (DD) [7]. The used modeling concepts are defined in a UML configuration profile [6] and can be 

                                                           
1 Note that the completion of the UML configuration model is not a precondition for applying the presented estimation 
concepts. However, the more is known about the product structure and functions, the more exact are the estimates. 
2 Note that not all product catalog instances (related to component interfaces) are shown here completely. 



 

interpreted as ontology [5], i.e. ontologies are theories about the sorts of objects, properties of objects, and relations 
between objects that are possible in a specified domain of knowledge3.  

Most configuration tasks incorporate additional restrictions (e.g. customer requirements) defining components or 
attribute settings which must be part of the final configuration. These requirements are called systems requirements 
specification (SRS) [7]. An example for such customer requirements is the following: set the maximum overall price of the 
configuration to 1000. A configuration result calculated by a configuration system (configurator) can be interpreted as an 
instantiation of the configuration model, where all business rules and customer requirements are satisfied. A configuration 
result can be represented as UML instance diagram [6].  

 
3. EFFORT ESTIMATION PROCESS 

There exists a number of approaches investigating the application of Function Point Analysis (FPA) for object-oriented 
software development (e.g. [8,14]). However, a direct application to effort estimation in configuration software 
development results in significant deviations. The reasons for these deviations are the following:  

• Knowledge-based systems development: existing approaches to FPA (see [1]) do not provide a standard way of 
accounting for the size of certain types of functional user requirements, notably complex sequences of rules as found in 
knowledge-based systems [1]. Such mechanisms are needed in order to support reasonable effort estimates for 
knowledge base development and maintenance. 

• Adjustment factors: important adjustment factors (e.g. experience of project members) currently not included in the 
FPA have to be introduced within the context of knowledge-based configuration. Furthermore, statistical spread 
resulting from the analysis of empirical data can exceed the standard deviation of FPA adjustment factors, i.e. the 
calculation of adjusted function points has to be adapted.  

• Company-specific software process: FPA doesn’t consider company-specific properties (e.g. time spent by 
programmers to complete a specific implementation task) of the development process but rather uses a standard 
complexity estimation to predict efforts. This results in deviations of estimates from actual project implementation 
efforts. Company-specific complexity measures can help to improve the accuracy of effort estimates. 

The basic process for company-specific Function Point analysis is depicted in Figure 2. In general it is very difficult to 
collect correct and useful software process data (e.g. the time spent to implement a specific class method), because software 
developers do not consider process data collection as an important activity (compared to concrete coding tasks). Software 
projects often lag behind defined deadlines – manually collecting data is a time-expensive task, at the same time there is no 
time left to be spent for data collection. The best solution for this problem is an automated acquisition tool seamlessly 
integrated into a developers implementation environment, i.e. developers are not required to interrupt their main tasks.  
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Figure 2: Effort estimation process 

 
In the phase FP data collection data collection can be performed by such a tool [13] – the result is a set of measured values 
describing time efforts related to one concrete project. Based on the result of this phase, estimates for different complexity 
                                                           
3 For a detailed discussion on the modeling elements of a configuration ontology and their translation into an executable 
representation see e.g. [6]. 



 

classes can be derived by applying cluster analysis on the given case base (determination of the boundary values for the 
complexity tables discussed in Section 4 – done in the phase FP complexity classes). The resulting tables change over time, 
i.e. improved development performance is automatically propagated to the corresponding complexity tables. Finally, given 
a new case (new project), effort estimates for the new project can be calculated (phase FP estimation). The more detailed 
the specification for the new configuration system is, the more exact are the corresponding effort estimates, i.e. we can start 
with a few basic assumptions on the number of classes, attributes, methods and business rules and will receive a first rough 
estimate. Throughout the project the estimates become increasingly exact. 
 

4. EFFORT ESTIMATION FOR IMPLEMENTING CONFIGURATORS 
 
4.1 Approach to FPA 
Our approach to FPA in knowledge-based configurator development as well assumes a user-centered view on a system. The 
functionality of the configurator application is defined by the following factors (see Figure 3).  
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Figure 3: FPA areas 

1. EI - External Input, i.e. those SRS4 related to functions which change the actual configuration setting, e.g. inserting a 
new software component or limiting the maximum price of the overall configuration. Using EI functions a user can 
add, change and delete settings of a configuration.  

2. EQ - External Query, i.e. those SRS related to functions displaying specific data from the current configuration setting, 
e.g. the price of a certain CPU part of the actual configuration. External Query (EQ) functions allow users to select and 
display specific data from configuration settings. For this purpose the user enters selection criteria which are used to 
match with configuration data, i.e. no data manipulation but a direct retrieval is performed by External Queries.  

3. EO - External Output, i.e. those SRS related to functions generating output for the user (generation is based on 
calculations), e.g. the determination of the minimum hard-disk capacity needed for the installation of a certain text 
editing environment or the inclusion of a pension calculator in the investment portfolio configuration process.  

4. ILF - Internal Logical File. EIs, EQs, and EOs operate on a model of the domain description (DD). In terms of FPA, 
the configuration knowledge base is denoted as a set of Internal Logical Files (ILFs), i.e. knowledge elements which 
are maintained5 within a configuration application. ILFs allow users to utilize data they are responsible for maintaining.  

5. EIF - External Interface File. Product catalogs can be seen as an example for External Interface Files (EIF), i.e. 
knowledge elements which are maintained outside the configuration application. EIFs allow users to utilize data they 
are not responsible for maintaining (e.g. product data from an external Enterprise Resource Planning system). 

6. BR - Business Rule. Conventional FPA approaches [1] do not explicitly consider the complexity of business logic - 
configurators are knowledge-based applications where knowledge complexity has a strong influence on development 
time and costs. In order to consider this important aspect in our estimation approach, we introduce Business Rules as 
an additional complexity dimension. 

                                                           
4 In this context, SRS are not strictly interpreted in the sense of [7], i.e. are more related to functions or methods which 
impose requirements to the configuration system. Examples for SRS are e.g. adding a certain Videocard or changing the 
value of the CPU clockrate to 2Ghz, where the semantics is that the added Videocard must be part of the configuration and 
the clockrate of a certain CPU must be set to 2Ghz. 
5 In this context maintenance denotes the usage of user functions for adapting the current model (i.e. instance of the 
configuration model) conforming to the given user requirements. 



 

In the following EI, EQ, and EO are denoted as transactional function types, ILF, EIF and BR are denoted as data 
function types. Based on the following three tasks, a function point value can be calculated for a given project. 
1. The components External inputs (EI), External Outputs (EO), External Queries (EQ), Internal Logical Files (ILF) and 

External Interface Files (EIF) are identified. ILFs, EIFs, BRs, EIs, EOs and EQs can be directly identified from a given 
UML configuration model - rules for identifying those units are discussed in Section 4.1 and 4.3. In early project 
phases assumptions on the number of classes etc. serve as an input for the first approximate estimates. 

2. The complexity weights are assigned to each of those components using the levels low, average and high. For each 
data function, Record Element Types (RETs) and Data Element Types (DETs) are counted as basic parameters. Based 
on those parameters the complexity of each data function can be determined. For each transactional function, File 
Types Referenced (FTRs6) and Data Element Types (DETs) are counted as basic parameters for determining the 
complexity (low, average, high) of the transactional function. By applying Tables 1-4 the complexity of each data 
function and each transactional function can be determined. The application of Table 5 results in a value for unadjusted 
function points (UFPs) for the configuration application, i.e. UFP = ∑EIFPs + ∑EOFPs + ∑EQFPs + ∑BRFPs + ∑ILFFPs + 
∑EIFFPs. 

3. Finally, General System Characteristics (GSC) are investigated w.r.t. their influence to the calculated UFPs, i.e. 
Adjusted Function Points FP = UFP*Adjustment Factor. 

 
4.2 Data collection 
As already mentioned, company-specific complexity measures can help to improve the accuracy of effort estimates. Figure 
4 sketches a corresponding data collection and transformation process. Developer’s efforts to implement transactional- and 
data function types are stored in a set of interaction traces. Theses traces are analyzed with the goal to derive the 
corresponding boundaries and measures for the complexity tables 1-4. Our approach to determine the boundaries is to 
generate a fixed set of clusters (data mining) representing the different entries in a complexity table. The values and 
boundaries in the table change (decrease) as the quality of the development process improves. By aggregating the stored 
time efforts for a certain complexity class (e.g. Table 1, 1-19 DET x 1 RET) into a corresponding average value, the entries 
of Table 5 can be determined (the basic assumption is that 10 Function Points represent 1 MM7).  
 
The entries of Tables 1-5 represent our current experiences in implementing commercial configuration applications. 
However, these tables are repeatedly improved in order to be up-to-date with the current development process. The 
Deviations in Figure 4 are the basis for providing boundaries for the calculated effort estimates (i.e. Function Points). 
 
4.3 Data functions 

Definition 1: Identification of Logical Files  

Logical Files (LFs) can e.g. be identified using the following criteria which are based on a variant of the approach presented 
in [4]. A logical file (i.e. either an ILF or an EIF) is identified by combining the following two basic rules.  

1. Count an entire aggregation structure as a single logical file, recursively joining lower level aggregations.  

2. Given an inheritance hierarchy, consider as a different logical file the collection of classes comprised in the entire path 
from the root superclass to each leaf subclass, i.e. inheritance hierarchies are merged down the leaves of a hierarchy. ٱ 

Merging superclasses makes sense since leaf classes with all inherited structures are instantiated during a configuration 
process. Figure 5 (left) contains an abstract example for the application for the above mentioned rules, i.e. LF1 represents 
those classes forming a partof hierarchy, LF2 and LF3 represent logical files derived from the different paths to leaf 
subclasses in the generalization hierarchy, where LF3 also includes the partof relationship between classes B2 and F 
(combination of rule 1 and rule 2).  

Note that this is one of several alternatives for the identification of Logical Files (see [4]). An alternative approach currently 
investigated is to interpret interaction units (i.e. input masks) as basic units for the identification of (internal) logical files.  

                                                           
6 Referenced Logical Files – see Section 3.3. 
7 See also Section 4.6. 



 

Example 1: Identification of LFs  

In the configuration model of Figure 1 the following LFs can be identified:  

• ILFs: {Computer, Software, HDUnit, MB, CPU, Videocard}, {Software, Textedit}, {Software, DataMining} 

• EIFs: {Texteditors}, {DataMiningTools}, {HDUnits}, {CPUs}, {Videocards}, {MBs} ٱ 

The Logical Files identified for the example configuration application are shown in Figure 5 (right).  
 

ILF/EIF StartTime EndeTime ... 
ILF1 10:45 10:56 ... 
EIF1 09:10 09:22 ... 
ILF2 13:22 13:28  
... ... ... ... 
 

Business Rule StartTime EndeTime ...
Business Rule 1 09:15 09:20 ...
Business Rule 1 14:36 14:44 ...
Business Rule 2 16:27 16:54 ...
... ... ... ...
 

EI/EO/EQ StartTime EndeTime ...
EI1 10:45 10:56 ...
EI2 09:10 09:22 ...
EI1 13:22 13:28 ...
EO1 10:45 10:56  
EO2 09:10 09:22  
EQ1 13:22 13:28  
... ... ... ...
 

Tables 1-4

FP complexity
classes

Table 5 Deviations  
Figure 4: Data collection and transformation process 

 
4.4 Complexity of Data functions 
 
Definition 2: Complexity of LFs  

For each LF (ILF and EIF) the number of Data Element Types (DETs - unique user-recognizable fields of LFs) and the 
number of Record Element Types (RETs - user-recognizable and logically related data as subgroups of LFs) is computed.  

1. Each class within a LF is interpreted as 1 RET.  

2. Each attribute within a LF is interpreted as 1 DET.  

3. Each involvement of a class in an association with multiplicity>1 is interpreted as 1 DET within a LF.  

4. Each discriminator to a subclass in a generalization hierarchy within a LF is interpreted as 1 DET. ٱ 
Depending on the number of RETs and DETs the complexity of ILFs and EIFs can be determined (see Table 1).  
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Figure 5: Identification of Logical Files 



 

Example 2: Complexity of ILFs and EIFs  

Based on the entries of Table 1 the data complexity of the computer configuration example can be determined as follows8:  

• ILFs: {{Computer, Software, HDUnit, MB, CPU, Videocard}/[6, 18, average], {Software, Textedit}/[2, 6, low], 
{Software, DataMining}/[2, 6, low]}.  

• EIFs: {{Texteditors}/ [1,6,low], {DataMiningTools}/ [1,6,low], {HDUnits}/ [1,3,low], {CPUs}/ [1,4,low], 
{Videocards}/ [1,2,low], {MBs}/ [1,4,low]}9. ٱ 

 
 1-19 DET 20-50 DET > 50 DET 
1 RET low low average 
2-5 RET low average high 
> 5 RET average high high 

Table 1: Complexity of Data Functions (DF) 

Definition 3: Complexity of BRs  

Depending on the number of RETs and DETs referenced by BRs within a LF and the number of BRs related to a LF (BRLF 
- BRs per LF), the complexity of BRs is determined (see Table 2). ٱ 

 
RET+DET 1-4 BRLF 5-9 BRLF >9BRLF 
1-16 low low average 
17-40 low average high 
>40 average high high 

Table 2: Complexity of Business Rules (BR) 

This approach provides a measure for the complexity of business rules defined within a LF. Note that this is a basic 
approach for estimating business rules complexity - if needed, this approach can be refined and extended for the specific 
settings of a company.  

Example 3: Complexity of BRs  

Based on the entries of Table 2 the BR complexity of the computer configuration example can be determined as follows10:  
{{Computer, Software, HDUnit, MB, CPU, Videocard}BR1,2/[10,2,low], {Software, Textedit}BR2/[2,1,low], {Software, 
DataMining}BR2/[2,1,low]} ٱ 
 
Note that BR1,2/[10,2,low] in Example 3 is derived by counting RETs+DETs referenced by BR1 and BR2 in the 
corresponding Logical File (LF1:{Computer, Software, HDUnit, MB, CPU, Videocard}). 
 
 
4.5 Complexity of Transactional Functions 
The following transactional functions address the user's capability to access configuration knowledge in ILFs and EIFs, i.e. 
maintaining, putting out and inquiring of configuration process-specific knowledge. In this context LFs are called FTRs 
(File Types Referenced - see Tables 3 and 4), i.e. a FTR denotes an ILF which is maintained or referenced by a 
transactional function or it denotes an EIF which is referenced by a transactional function.  

                                                           
8 We use the notation [#RETs, #DETs, complexity], where the entries in Tables 1-5 are the result a corresponding data 
analysis (see Section 4.2). 
9 We assume that the number of component interface attributes is equal to the number of corresponding component 
attributes. 
10 We use the notation [#RETs+#DETs, #BRLF, complexity]. 



 

Example 4: Complexity of EI  

EIs are represented by addTextedit(), deleteTextedit(), insertVideocard(), deleteVideocard(). For each of these operations 
only one FTR exists. For the purposes of our example we assume low complexity for each of those operations. ٱ 

Example 5: Complexity of EO  

EOs are represented by getPrice(), getMBPrice(). One FTR and one DET is referenced by the method getPrice(), i.e. the 
method has low complexity – the same holds for getMBPrice().ٱ 

Example 6: Complexity of EQ  
EQs are exemplified by getHDUnitCapacity(HDUnit). Two FTRs and one DET are referenced, i.e. the method has low 
complexity. ٱ 
 
 

 1-4 DET 5-15 DET >16 DET 
0-1 FTR low low average 
2 FTR low average high 
> 2 FTR average high high 

Table 3: Complexity of EIs 

 
 

 1-5 DET 6-19 DET >19 DET 
0-1 FTR low low average 
2-3 FTR low average high 
> 3 FTR average high high 

Table 4: Complexity of EOs and EQs 

4.6 Unadjusted Function Points 
Based on the assignment of function points to different complexity classes (see Table 5) unadjusted function points (UFP) 
can be determined for the identified data- and transaction functions. These function points are company-specific and 
represent values calculated in phase 2 (Section 3, FP complexity classes). 

 
Complexity ILF EIF BR EI EO/EQ 
low 0,25 0,15 0,25 0,25 0,25 
average 0,5 0,5 1,5 1 1,5 
high 1,5 1 2 1,5 2 

Table 5: Determination of Function Points 

 
Summing up these function points (see Table 6) results in 4,4 unadjusted FPs for our example which approximately 
corresponds to an effort of less than ½ MMs, i.e. 10 FPs are approximately equal to one MM. This first estimation (UFPs) 
must be adjusted using a set of adjustment factors (related to general system characteristics - GSC). GSCs are divided into 
two basic groups.  

• Product characteristics, i.e. characteristics related to properties of the configuration application (e.g. requirements for 
distributed configuration support etc.).  

• Project characteristics, i.e. characteristics related to management strategies and project team (e.g. how well are 
configuration concepts known by the team/customer?).  

Adjusted Function Points (FPs) are determined as follows: FP=UFP*(sdev+(TDI*0.01)) represents the Total Degree of 
Influence calculated from GSCs. The relationship between FPs and MMs (10:1) is a constant in traditional software 
development, i.e. is used by well-known Function Point oriented effort estimation approaches [1]. In this formula sdev 
represents the standard deviation when analyzing the development time record sets (sdev in % of average project duration). 



 

TDI indicates additional efforts which can be expected in the current configurator project (e.g. implementation of 
distributed configuration solutions or the implementation of Web-based configuration applications with special 
performance requirements11). 
 

 low average high sum 
ILF 2 1 0 1 
EIF 6 0 0 0,9 
BR 3 0 0 0,75 
EO/EQ 2/1 0 0 0,75 
EI 4 0 0 1 
UFPs    4,4 

Table 6: UFPs for example application 

 
 

5. EVALUATION 
 

Applying the estimation concepts within a company requires the availability of data recording mechanisms integrated 
within the configurator development environment (the integration of such functionalities is shown in e.g. [13]). The 
presented concepts allow the provision of more concrete time and effort estimates for the customer. Experiences show that 
the application of the presented estimation concepts leads to a higher consciousness w.r.t. factors influencing 
implementation efforts and consequently to improved predictions of efforts. A very important influence factor w.r.t. the 
acceptance of an effort estimation method is its seamless integration into the given development environment. An 
automated data collection tool can provide such a functionality (such a feature has to be integrated by the corresponding 
configurator companies). Finally, FPA concepts are simple to use (a rather small set of concepts) – for this reason it can 
effectively be integrated into a company-specific development process. 

 

6. RELATED WORK 
 
The identification of sources of variations in effort estimation can significantly contribute to more reliable estimations for 
software projects [10]. In this paper configurator development is identified as such a source of variation which is tackled by 
adapting FPA to the special conditions of knowledge-based configurator development. There exists a number of approaches 
applying FPA to object-oriented software development (e.g. [8,14]). A direct application of these approaches to 
configurator development effort estimation results in significant and unacceptable deviations. The COSMIC [1] approach is 
a ISO standard effort estimation approach within the context of conventional software development projects. Although the 
method provides an interface for introducing additional measures, COSMIC does not explicitly take into consideration 
effort estimation support for knowledge-based systems development. Within the context of our projects we chose to apply 
conventional FPA, however the integration of our concepts into COSMIC is the subject of future work. The Feature Point 
approach (see [9]) is an extension to FPA which introduces (beside data functions and transactional functions) the 
complexity of algorithms as an additional parameter influencing effort estimation. Compared to our approach, Feature 
Points consider algorithms rather than business rules in knowledge bases. Effort estimation approaches in knowledge-based 
systems development provide a number of metrics (e.g. size metrics such as rule set density) but do not provide any 
experimental data to relate metrics to concrete effort sizes. [3] discuss different factors influencing development efforts in 
configurator development. A set of factors is presented influencing effort size in configuration projects – no relationship 
between those factors an concrete effort measures is defined.  

 

7. CONCLUSIONS 
 
We have shown the application and extension of Function Point Analysis (FPA) for effort estimation in the development of 
knowledge-based configuration systems. A framework for a company-specific application has been presented which 
reduces prediction error rates compared to the application of conventional FPA approaches. Using this approach, effort 
estimation techniques from conventional development can be integrated into development processes for knowledge-based 

                                                           
11 For reasons of space limitations we do not discuss the whole set of GSC. 



 

(configuration) systems development. Further work will include the analysis of domain-specific complexity classes and the 
inclusion of discrete simulation models in order to further improve the accurateness of effort predictions. 
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