Electromagnetism

Lecture 2

Coordinate System

Different Coordinate Systems

- Cartesian (Rectangular) Coordinate System
- Cylindrical Coordinate System
- Spherical Coordinate System

Cartesian Coordinate System

- Cartesian (Rectangular) Coordinate System is defined by a set of three mutually perpendicular planes
- The point where all the three planes intersect is known as the origin.
- Pair of planes intersect in a straight ${ }^{x}=$ =conest

- Hence three planes define a set of three straight lines that are called coordinate axis. Which are denoted by x, y, and z .

Coordinates x, y, z

- The value of x, y and z at origin is

Cartesian Coordinate System (cont.)

- A point is also defined by the intersection of three orthogonal surfaces.
- In cartesian coordinates the surfaces are the infinite planes $\mathrm{x}=$ const., $\mathrm{y}=$ cants. And $\mathrm{z}=$ const.
- yz plane - x constant
- zx plane - y constant
- xy plane - z constant

2/8 $4201 \mathrm{H}_{3}$ vectors have fixed directions, independent of the location of point P

CYLINDRICAL COORDINATES

- Very convenient when dealing with problems having cylindrical symmetry.
- Cylindrical coordinate system involves set of three mutually perpendicular surfaces.
-The three surfaces are one cylindrical and two planes.
- A point P in cylindrical coordinate is $(\mathrm{r}, \phi, \mathrm{z})$ where
r : is the radius of the cylinder; radial displacement from the z-axis
$\Phi:$ azimuthal angle or the angular displacement from x-axis
z : vertical displacement z from the origin (as in the cartesian system).

CYLINDRICAL COORDINATES

The range of the variables are

$$
0 \leq r<\infty, 0 \leq \Phi<2 \pi,-\infty<z<\infty
$$

vector \vec{A} in cylindrical coordinates can be written as $\left(A_{r}, A_{\phi}, A_{z}\right)$ or $A_{r} a_{r}+A_{\phi} a_{\phi}+A_{z} a_{z}$ The magnitude of \vec{A} is

$$
|\vec{A}|=\sqrt{A_{\mathrm{r}}^{2}+A_{\phi}^{2}+A_{z}^{2}}
$$

Cylindrical coordinate system any point is considered as intersection of three mutually perpendicular surfaces.

- Circular cylinder (r = constant)
- Half plane with its edge along the z axis ($\phi=$ const.)
-Anotherariplane xy ($z=$ constaLt ${ }^{2}$ ture by Dr Aparna Tripathi

RELATION BETWEEN VARIABLES

The relationships between the variables (x, y, z) of the Cartesian coordinate system and the cylindrical system $1(r, \phi, z)$ are obtained as

$$
\begin{array}{ll}
\mathrm{r}=\sqrt{x^{2}+y^{2}} & x=\mathrm{r} \cos \phi \\
\phi=\tan ^{-1} y / x & y=\mathrm{r} \sin \phi \\
z=z & z=z
\end{array}
$$

- So a point $P(3,4,5)$ in Cartesian coordinate is the same as?

$$
\begin{aligned}
& \rho=\sqrt{3^{2}+4^{2}}=5 \\
& \phi=\tan ^{-1} 4 / 3=0.927 \mathrm{rad} \\
& z=5
\end{aligned}
$$

 same as P $(5,0.927,5)$ in cylindrical coordinate)

SPHERICAL COORDINATES

The spherical coordinate system is used dealing with problems having a degree of spherical symmetry.
-The three mutually orthogonal surfaces are a sphere , a cone and a plane

Point P represented as (r, θ, φ) where ${ }_{4}^{2}$

r : the distance from the origin,
θ : called the colatitude is the angle between z -axis and vector of P ,
Φ : azimuthal angle or the angular displacement from x-axis (the same azimuthal angle incylindrical coordinates) 2/8/2013

SPHERICAL COORDINATES

The range of the variables are
$0 \leq r<\infty, 0 \leq \theta<\pi, 0<\varphi<2 \pi$
A vector \mathbf{A} in spherical coordinates written as $\left(\mathrm{A}_{r} \mathrm{~A}_{\theta}, \mathrm{A}_{\varphi}\right)$ or $\mathrm{A}_{r} \mathrm{a}_{r}+\mathrm{A}_{\theta} \mathrm{a}_{\theta}+\mathrm{A}_{\varphi} \mathrm{a}_{\varphi}$

The magnitude of A is

$$
|\vec{A}|=\sqrt{{A_{r}}^{2}+{A_{\phi}}^{2}+{A_{\theta}}^{2}}
$$

$$
\mathbf{P}(\mathbf{r}, \theta, \phi
$$

RELATION BETWEEN VARIABLES

$$
\left.\begin{aligned}
& r=\sqrt{x^{2}+y^{2}+z^{2}} \\
& \theta=\tan ^{-1} \frac{\left(\sqrt{x^{2}+y^{2}}\right)}{z} \\
& \phi=\tan ^{-1} \frac{y}{x}
\end{aligned} \right\rvert\, \begin{aligned}
& x=r \sin \theta \cos \phi \\
& y=r \sin \theta \sin \phi \\
& z=r \cos \theta
\end{aligned}
$$

DIFFERENTIAL ELEMENTS

In vector calculus the differential elements are length, area and volume are useful.

They are defined in the Cartesian, cylindrical and spherical coordinate

DIFFERENTIAL ELEMENTS

CARTESIAN COORDINATES

- Differential elements in Cartesian coordinate may be obtained by increasing coordinate values x, y, and z by differential increments dx, dy and dz.
-The this will lead to three slightly displaced planes intersecting at another $\mathrm{pt} \mathrm{P}^{\prime}(\mathrm{x}+\mathrm{dx}$, $\mathrm{y}+\mathrm{dy}$ and $\mathrm{z}+\mathrm{dz}$).
-Differential displacement dl is the distance between pt P and P'

$$
\text { Differential displacement : } \quad \vec{l}=d x a_{x}+d y a_{y}+d z a_{z}
$$

DIFFERENTIAL ELEMENTS

CARTESIAN COORDINATES

Differential normal area:

$$
\begin{aligned}
& d \vec{S}=d y d z \mathbf{a}_{x} \\
& d \vec{S}=d x d z \mathbf{a}_{y} \\
& d \vec{S}=d x d y \mathbf{a}_{z}
\end{aligned}
$$

DIFFERENTIAL ELEMENTS

CARTESIAN COORDINATES

Differential displacement	$d \vec{l}=d x \mathbf{a}_{x}+d y \mathbf{a}_{y}+d z \mathbf{a}_{z}$
Differential normal area	$d \vec{S}=d y d z \mathbf{a}_{x}$ $d \vec{S}=d x d z \mathbf{a}_{y}$ $d \vec{S}=d x d y \mathbf{a}_{z}$
Differential volume	$d v=d x d y d z$

DIFFERENTIAL ELEMENTS

CYLINDRICAL COORDINATES

- Differential elements in Cylindrical coordinate may be obtained by increasing coordinate values r, ϕ, and z by differential increments dr,d ϕ and dz.
-The this will lead to
$>$ two slightly displaced cylinders of radii r and $\mathrm{r}+\mathrm{dr}$,
$>$ the two radial planes at angle ϕ and $\phi+\mathrm{d} \phi$ $>$ The two horizontal planes at height z and z+dz

DIFFERENTIAL ELEMENTS

CYLINDRICAL COORDINATES

Differential normal area: $\quad \overrightarrow{d S}=d r d z a_{\phi}$

DIFFERENTIAL ELEMENTS

CYLINDRICAL COORDINATES

Differential displacement	$\overrightarrow{d l}=d r a_{r}+r d \phi a_{\phi}+d z a_{z}$		
Differential normal area	$\overrightarrow{d S}=r d \phi d z a_{r}$		
	$\overrightarrow{d S}=d r d z a_{\phi}$		
$\overrightarrow{d S}=r d \phi d r a_{z}$,	$\overrightarrow{d v}=r d r d \varphi d z$
:---			
Differential volume			

Example : 4

Use cylindrical coordinates to find the area of the curved surface of a right circular cylinder of radius a and height h The differential surface element is $\quad \mathrm{dA}=\mathrm{rd} \mathrm{\phi} \mathrm{dz}$

Then

$$
\begin{gathered}
A=\int_{0}^{h} \int_{0}^{2 \pi} r d \phi d z \\
A=a \int_{0}^{h 2 \pi} \int_{0}^{2 \pi} d \phi d z=2 \pi a h
\end{gathered}
$$

Its volume (for a radius $r=a$) is $\quad V=\int_{0}^{a} \int_{0}^{h} \int_{0}^{2 \pi} r d r d \phi d z$

DIFFERENTIAL ELEMENTS

SPHERICAL COORDINATES

- Differential elements in Spherical coordinate may be obtained by increasing coordinate values r, θ and ϕ by differential increments $\mathrm{dr}, \mathrm{d} \theta$ and $\mathrm{d} \phi$.
-The this will lead to
$>$ Distance between two sphere -r and $\mathrm{r}+\mathrm{dr}$, $>$ Distance between two cone θ and $\theta+\mathrm{d} \theta$
$>$ Distance between two plane ϕ and $\phi+\mathrm{d} \phi$

Differential line elements

$$
\mathrm{dl}^{2}=\mathrm{dr}^{2}+(\mathrm{rd} \theta)^{2}+(\mathrm{r} \sin \theta \mathrm{~d} \phi)^{2}
$$

DIFFERENTIAL ELEMENTS

SPHERICAL COORDINATES

Differential normal area: $\quad d \vec{S}=r \sin \theta d r d \phi \mathbf{a}_{\theta}$

$$
\underset{\text { ripathi }}{d \vec{S}}=r d r d \theta \mathbf{a}_{\phi}
$$

DIFFERENTIAL ELEMENTS

SPHERICAL COORDINATES

Differential displacement	$d \vec{l}=d r a_{r}+r d \theta a_{\theta}+r \sin \theta d \phi a_{\phi}$
Differential normal area	$d \vec{S}=r^{2} \sin \theta d \theta d \phi a_{r}$ $d \vec{S}=r \sin \theta d r d \phi a_{\theta}$ $d \vec{S}=r d r d \theta a_{\phi}$
Differential volume	$d v=r^{2} \sin \theta d r d \theta d \phi$

