Lecture 11

Electromagnetic waves in Dielectric medium

Electromagnetic waves in Dielectric medium

- In an isotropic dielectric medium, there are no fundamental charge carriers, hence the current density in a dielectric medium is zero $(\mathrm{J}=0)$.
-There is no volume distribution od charge in the medium i.e. volume charge density is zero $(\boldsymbol{\rho}=0)$.
-Maxwell's eqs reduces to

$$
\begin{array}{lll}
\nabla \cdot \vec{E}=0 & \ldots . .(1) & \mathrm{D}=\varepsilon \mathrm{E} \\
\nabla \cdot \vec{H}=0 & \ldots . .(2) & \mathrm{B}=\mu \mathrm{H} \\
\nabla \times \vec{E}=-\mu \frac{\partial H}{\partial t} & \ldots .(3) & \\
\nabla \times \vec{H}=\varepsilon \frac{\partial E}{\partial t} & \ldots .(4) & \tag{4}\\
& \\
& \\
\text { Dr.Aparna Tripathi } &
\end{array}
$$

Taking the curl of eq 3 both sides

$$
\nabla \times(\nabla \times \vec{E})=\nabla \times\left(-\mu \frac{\partial \vec{H}}{\partial t}\right)=-\mu \frac{\partial}{\partial t}(\nabla \times \vec{H})
$$

Now from vector identity

$$
\nabla \times(\nabla \times \vec{E})=\nabla(\nabla \bullet \vec{E})-((\nabla \bullet \nabla) \vec{E})=\nabla(\nabla \bullet \vec{E})-\nabla^{2} \vec{E}
$$

from Maxwell, s eq 4
$\nabla \times \vec{H}=\varepsilon \frac{\partial E}{\partial t}$
$\nabla(\nabla \cdot \vec{E})-\nabla^{2} \vec{E}=-\mu \frac{\partial}{\partial t}\left(\varepsilon \frac{\partial E}{\partial t}\right)$
from Maxwell, s eq 1
$\nabla \bullet \vec{E}=0$
$\underset{3 / 7 / 2013}{\nabla} \nabla^{2} \vec{E}=\mu \frac{\partial}{\partial t}\left(\varepsilon \frac{\partial E}{\partial t}\right)_{\text {Dr. Ap }}=\mu \varepsilon \frac{\partial^{2} E}{}$

$$
\begin{aligned}
& \nabla^{2} \vec{E}-\mu \varepsilon \frac{\partial^{2} E}{\partial t^{2}}=0 \\
& \nabla^{2} \vec{E}-\frac{1}{v^{2}} \frac{\partial^{2} E}{\partial t^{2}}=0 \quad \text { where } \mathrm{v}=\frac{1}{\sqrt{\mu \varepsilon}} \ldots .5
\end{aligned}
$$

Similarly Taking the curl of eq 4 both sides

$$
\nabla \times(\nabla \times \vec{H})=\nabla \times\left(\varepsilon \frac{\partial \vec{E}}{\partial t}\right)=\varepsilon \frac{\partial}{\partial t}(\nabla \times \vec{E})
$$

But from Maxwell, s eq 3 and eq2

$$
\begin{aligned}
& \nabla \times \vec{E}=-\mu \frac{\partial H}{\partial t} \text { and } \nabla \bullet H=0 \\
& \nabla(\nabla \bullet H)-\nabla^{2} H=\varepsilon \frac{\partial}{\partial t}\left(-\mu \frac{\partial H}{\partial t}\right)_{\text {Dr.Aparna }}^{\text {3/ripathi }}
\end{aligned}
$$

$$
\begin{align*}
& 0-\nabla^{2} H=\varepsilon \frac{\partial}{\partial t}\left(-\mu \frac{\partial H}{\partial t}\right) \\
& \nabla^{2} H=\mu \varepsilon \frac{\partial^{2} H}{\partial t^{2}} \\
& \nabla^{2} H-\mu \varepsilon \frac{\partial^{2} H}{\partial t^{2}}=0 \\
& \nabla^{2} H-\frac{1}{v^{2}} \frac{\partial^{2} H}{\partial t^{2}}=0 \quad \text { where } \mathrm{v}=\frac{1}{\sqrt{\mu \varepsilon}}
\end{align*}
$$

Expression 5 and 6 are the wave equations for the propagation of electromagnetic waves in dielectric medium with a speed v .

$$
\mathrm{v}=\frac{1}{\sqrt{\mu \varepsilon}}=\frac{1}{\sqrt{\mu_{0} \mu_{r} \varepsilon_{0} \varepsilon_{r}}}=\frac{1}{\sqrt{\mu_{r} \varepsilon_{r}}} \times \frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}=\frac{c}{\sqrt{\mu_{r} \varepsilon_{r}}} \quad \ldots 7
$$

Wherezapisis the relative permeabibtyAanch बjpigst the relative permittivity of the medium
$a \mathrm{~S} \mu_{r}>1$ and $\left.\varepsilon_{r}\right\rangle 1$
$v\langle c$
Thus, the velocity of propagation of a wave in a dielectric medium is less that that in air or free space.

The refractive index of the dielectric medium is defined as

$$
\mathrm{n}=\frac{\text { speed of wave in vacuum }}{\text { speed of wave in medium }}=\frac{c}{v}=\sqrt{\mu_{r} \varepsilon_{r}} \quad \ldots 8
$$

If the medium is non-magnetic then $\mu_{r}=1$

$$
\mathrm{n}=\sqrt{\varepsilon_{r}} \quad \text { or } \mathrm{n}^{2}=\varepsilon_{r}
$$

Thus the refractive index of a non-magnetic dielectric medium is equal to the square26ø@t of its relative permittivityAparna Tripathi

Solution of Electromagnetic waves for Dielectric medium

Assume we have a plane wave propagating in x direction (ie E, B not functions of y or z)

$$
\begin{align*}
& \nabla^{2} E-\frac{1}{v^{2}} \frac{\partial^{2} E}{\partial t^{2}}=0 \\
& \nabla^{2} H-\frac{1}{v^{2}} \frac{\partial^{2} H}{\partial t^{2}}=0
\end{align*}
$$

The wave solution of above eq in well known form may be written as

$$
\begin{aligned}
& \vec{E}(r, t)=\overrightarrow{E_{\mathrm{o}}} \mathrm{e}^{\mathrm{i}(\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{r}}-\omega \mathrm{t})} \\
& \vec{H}(r, t)=\overrightarrow{H_{\mathrm{o}}} \mathrm{e}^{\mathrm{i}(\overrightarrow{\mathrm{k}} \cdot \overrightarrow{\mathrm{r}}-\omega \mathrm{t})}
\end{aligned}
$$

Where E_{0} and H_{0} are complex amplitudes which are constant in space and time
but \vec{k} is a wave propagation vector and defined as

$$
\vec{k}=k \hat{n}=\frac{2 \pi}{\lambda} \hat{n}=\frac{2 \pi v}{v} \hat{n}=\frac{\omega}{v} \hat{n}
$$

Wherrergats a unit vector along the dixeccatioftipathpropagation of em waves

The solution of plane em wave eqs in dielectric medium represented by eqs 9 and 10 satisfy Maxwell's equation 1 and 2 only when

$$
\begin{array}{lll}
\nabla \cdot \vec{E}=0 & \text { when } & \vec{k} \cdot \vec{E}=0 \\
\text { similarly } & & \\
\nabla \cdot \vec{H}=0 & \text { when } & \vec{k} \cdot \vec{H}=0
\end{array}
$$

This indicates that electric and magnetic fields are \perp to the direction of propagation vector k i.e the em waves in isotropic dielectric are transverse in nature.

Maxwell's Eq 3 and eq4 in isotropic dielectric

$$
\begin{aligned}
& \nabla \times \vec{E}=-\mu \frac{\partial \vec{H}}{\partial t} \\
& \nabla \times \vec{H}=\varepsilon \frac{\partial \vec{E}}{\partial t}
\end{aligned}
$$

$$
\begin{aligned}
& \vec{k} \times \vec{E}=\mu \omega \vec{H} \\
& \text { Similarly for } \vec{k} \times \vec{H} \text { may be obtained as } \\
& \vec{k} \times \vec{H}=-\varepsilon \omega \vec{E}
\end{aligned}
$$

From eq 11 , the field vector H is \perp to both k and E and according to eq 12 , E is \perp to both k and H .

So its concluded that field vector E and H are mutually \perp to each other and also \perp to the direction of propagation of wave.

from eq 11

$$
\mu \omega \vec{H}=\vec{k} \times \vec{E} \quad \ldots \mathrm{~A} \quad(\vec{k}=k \hat{n})
$$

$$
\mu \omega \vec{H}=k(\hat{n} \times \vec{E})
$$

Where n is a unit vector along the direction of propagation of em waves

$$
\vec{H}=\frac{k}{\mu \omega}(\hat{n} \times \vec{E})
$$

but \vec{k} is a wave propagation vector and defined as

$$
\vec{k} \underset{3 / 7 / 2013}{k} \hat{n}=\frac{2 \pi}{\lambda} \hat{n}=\frac{2 \pi v}{V^{\text {Vr.Aparna Tipativ }}} \hat{n}=\frac{\omega}{n}
$$

$$
\therefore \quad \vec{H}=\frac{1}{\mu \nu}(\hat{n} \times \vec{E})
$$

in terms of magnitude

$$
\begin{aligned}
& |\vec{H}|=\sqrt{\frac{\varepsilon}{\mu}}|\hat{n} \times \vec{E}| \quad \because k=\frac{\omega}{v} \quad \text { and } \mathrm{v}=\frac{1}{\sqrt{\mu \varepsilon}} \\
& H=\sqrt{\frac{\varepsilon}{\mu}} E
\end{aligned}
$$

Now the ratio of magnitude of E to the magnitude of H is symbolized by Z

$$
Z=\frac{E}{H}=\frac{E_{0}}{H_{0}}=\sqrt{\frac{\mu}{\varepsilon}}=\sqrt{\frac{\mu_{0} \mu_{r}}{\varepsilon_{0} \varepsilon_{r}}}
$$

This relation shows that the field vector E and H are in same phase.

The wave impedance of medium is related to that of free space by the relation
$Z=\sqrt{\frac{\mu_{r}}{\varepsilon_{r}} \cdot \frac{\mu_{0}}{\varepsilon_{0}}}=Z_{0} \sqrt{\frac{\mu_{r}}{\varepsilon_{r}}}$
where $Z_{0}=\sqrt{\frac{\mu_{0}}{\varepsilon_{0}}}$ is called the wave impedance in free space.

Power in a wave

- A wave carries power and transmits it wherever it goes

The rate of flow of energy per unit area in wave is given by the Poynting vector.

Poynting Vector Derivation

Taking scalar product of Maxwell 's eq 3 with H and eq 4 with E

$$
\begin{align*}
& H \cdot \nabla \times E=-H \cdot \frac{\partial B}{\partial t} \\
& \mathrm{E} \cdot(\nabla \times \mathrm{H})=\mathrm{E} \cdot \mathrm{~J}+\mathrm{E} \cdot \frac{\partial D}{\partial t}
\end{align*}
$$

Subtracting eq 2 from eq 1

$$
\begin{align*}
& H \cdot \nabla \times E-\mathrm{E} \cdot(\nabla \times \mathrm{H})=-H \cdot \frac{\partial B}{\partial t}-\mathrm{E} \cdot \mathrm{~J}-\mathrm{E} \cdot \frac{\partial D}{\partial t} \\
& H \cdot \nabla \times E-\mathrm{E} \cdot(\nabla \times \mathrm{H})=-\left[H \cdot \frac{\partial B}{\partial t}+\mathrm{E} \cdot \frac{\partial D}{\partial t}\right]-\mathrm{E} \cdot \mathrm{~J}
\end{align*}
$$

Now using vector identity

$$
\begin{aligned}
& \nabla \cdot(A \times B)=B \cdot(\nabla \times A)-A \cdot(\nabla \times B) \text { or in this case : } \\
& \nabla \cdot(E \times H)=H \cdot(\nabla \times E)-E \cdot(\nabla \times H)
\end{aligned}
$$

Eq 3 can be written as

$$
\nabla \cdot(E \times \mathrm{H})=-\left[H \cdot \frac{\partial B}{\partial t}+\mathrm{E} \cdot \frac{\partial D}{\partial t}\right]-\mathrm{E} \cdot \mathrm{~J}
$$

Using relation $B=\mu H$ and $D=\varepsilon E$, in eq 4

$$
\begin{align*}
\nabla \cdot(E \times \mathrm{H}) & =-\left[H \cdot \frac{\partial(\mu H)}{\partial t}+\mathrm{E} \cdot \frac{\partial(\varepsilon E)}{\partial t}\right]-\mathrm{E} \cdot \mathrm{~J} \\
& =-\mu H \cdot \frac{\partial H}{\partial t}-\varepsilon \mathrm{E} \cdot \frac{\partial E}{\partial t}-\mathrm{E} \cdot \mathrm{~J}
\end{align*}
$$

But

$$
H \cdot \frac{\partial H}{\partial t}=\frac{1}{2} \frac{\partial(H)^{2}}{\partial t} \quad \text { and } \quad E \cdot \frac{\partial E}{\partial t}=\frac{1}{2} \frac{\partial(E)^{2}}{\partial t}
$$

$$
{ }_{3 / 7 / 2013} \nabla \cdot(E \times \mathrm{H})=-\frac{\mu}{2} \frac{\partial(H)^{2}}{\partial t \cdot A p a m m a t i p a t h i r} \frac{\varepsilon}{\partial t} \frac{\partial(E)^{2}}{\partial t}-\mathrm{E} \cdot \mathrm{~J}
$$

$$
\nabla \cdot(E \times \mathrm{H})=\frac{\partial}{\partial t}\left[\frac{\mu H^{2}}{2}+\frac{\varepsilon E^{2}}{2}\right]-\mathrm{E} \cdot \mathrm{~J} \quad \ldots 6
$$

Now integrating eq 6 over a volume V bounded by surface S

$$
\int_{v} \nabla \cdot(E \times H) d v=-\frac{\partial}{\partial t} \int_{v}\left(\frac{\varepsilon}{2} E^{2}+\frac{\mu}{2} H^{2}\right) d v-\int_{v} E \cdot J d v \ldots 7
$$

Using Gauss Divergence theorem $\int \nabla \cdot(E \times H) d v=\oint(E \times H) d s$
Eq 7 becomes

$$
\oint_{S}(E \times H) \cdot d S=-\frac{\partial}{\partial t} \int_{v}\left(\frac{\varepsilon}{2} E^{2}+\frac{\mu}{2} H^{2}\right) d v-\int_{v} E \cdot J d v, \ldots 9
$$

Which means that the total power coming out of a volume is either dudue to the electric or magnetic fifeld energy variations or is lost in ohmic losses.

Poynting Vector

- Waves carry energy and information
- Poynting says that the net power flowing out of a given volume is = to the decrease in time in energy stored minus the conduction losses.

$$
\vec{S}=\vec{E} \times \vec{H} \quad\left[\mathrm{~W} / \mathrm{m}^{2}\right]
$$

- The Poynting vector has the same direction as the direction of propagation.

Represents the instantaneous power density vector associated to the electromagnetic wave.

The Poynting Vector

Energy transport is defined by the Poynting vector S as:

The direction of S is the direction of propagation of the wave

$$
S=\frac{E B}{\mu_{0}}=\frac{E^{2}}{\mu_{0} c}=\frac{E^{2}}{Z_{0}}=\frac{E^{2}}{377 \Omega}
$$

Electrostatic Boundary Conditions

- At any point on the boundary,
- the components of E_{1} and E_{2} tangential to the boundary are equal

$$
E_{1 t}=E_{2 t}
$$

- the components of \boldsymbol{D}_{1} and \boldsymbol{D}_{2} normal to the boundary are equal

$$
\underbrace{}_{\text {Dr. Aparna Tripathi }}=D_{2 t}
$$

Magnetic Boundary Conditions

- The normal component of \boldsymbol{B}_{1} and $\boldsymbol{B}_{\mathbf{2}}$ continuous across a interface:

$$
B_{1 n}=B_{2 n}
$$

- The tangential component of a $\boldsymbol{H}_{\mathbf{1}}$ and \boldsymbol{H}_{2} to the boundary are equal

$$
H_{1 t}=H_{2 t}
$$

Hayt p-281

Reflection and Transmission of Waves at Planar Interfaces

Normal Incidence

- Consider both medium 1 and medium 2
- Let us place the boundary between the two media in the $z=0$ plane, and consider an incident plane wave which is traveling in the $+z$ direction.
- we assume that the electric field of the incident wave is in the x-direction.

Normal Incidence

Normal Incidence

- Incident wave

$$
\begin{aligned}
& \bar{E}_{i}=\hat{a}_{x} E_{i 0} e^{-j \beta_{1} z} \\
& \bar{H}_{i}=\frac{1}{\eta_{1}} \hat{a}_{z} \times \bar{E}_{i}=\hat{a}_{y} \frac{E_{i 0}}{\eta_{1}} e^{-j \beta_{1} z} \\
& \beta_{1}=\omega \sqrt{\varepsilon_{1} \mu_{1}} \quad \eta_{1}=\sqrt{\frac{\mu_{1}}{\varepsilon_{1}}}
\end{aligned}
$$

Normal Incidence

- Reflected wave

unknown

$$
\begin{aligned}
& \bar{E}_{r}=\hat{a}_{x} E_{r 0} e^{+j \beta_{1} z} \\
& \bar{H}_{r}=\frac{1}{\eta_{1}}\left(-\hat{a}_{z}\right) \times \bar{E}_{r}=-\hat{a}_{y} \frac{E_{r 0}}{\eta_{1}} e^{+j \beta_{1 z} z}
\end{aligned}
$$

Normal Incidence

- Transmitted wave

unknown

$$
\begin{aligned}
& \bar{E}_{t}=\hat{a}_{x} E_{t 0} e^{-j \beta_{2} z} \\
& \bar{H}_{t}=\frac{1}{\eta_{2}} \hat{a}_{z} \times \bar{E}_{t}=\hat{a}_{y} \frac{E_{t 0}}{\eta_{2}} e^{-j \beta_{2} z} \\
& \beta_{2}=\omega \sqrt{\varepsilon_{2} \mu_{2}} \quad \eta_{2}=\sqrt{\frac{\mu_{2}}{\varepsilon_{2}}}
\end{aligned}
$$

Normal Incidence

- The total electric and magnetic fields in medium 1 are

$$
\begin{aligned}
& \bar{E}_{1}=\bar{E}_{i}+\bar{E}_{r}=\hat{a}_{x}\left[E_{i 0} e^{-j \beta_{1} z}+E_{r 0} e^{+j \beta_{1} z}\right] \\
& \bar{H}_{1}=\bar{H}_{i}+\bar{H}_{r}=\hat{a}_{y}\left[\frac{E_{i 0}}{\eta_{1}} e^{-j \beta_{1} z}-\frac{E_{r 0}}{\eta_{1}} e^{+j \beta_{1} z}\right.
\end{aligned}
$$

Normal Incidence

- The total electric and magnetic fields in medium 2 are

$$
\begin{aligned}
& \bar{E}_{2}=\bar{E}_{t}=\hat{a}_{x} E_{t 0} e^{-j \beta_{2} z} \\
& \bar{H}_{2}=\bar{H}_{t}=\hat{a}_{y} \frac{E_{t 0}}{\eta_{2}} e^{-j \beta_{2} z}
\end{aligned}
$$

Normal Incidence

- To determine the unknowns $E_{r 0}$ and $E_{t 0}$, we must enforce the BCs at $z=0$:

$$
\begin{aligned}
& \bar{E}_{1}(z=0)=\bar{E}_{2}(z=0) \\
& \bar{H}_{1}(z=0)=\bar{H}_{2}(z=0)
\end{aligned}
$$

Normal Incidence)

- From the BCs we have
or

$$
\begin{aligned}
& E_{i 0}+E_{r 0}=E_{t 0} \\
& \frac{E_{i 0}}{\eta_{1}}-\frac{E_{r 0}}{\eta_{1}}=\frac{E_{t 0}}{\eta_{2}}
\end{aligned}
$$

$$
E_{r 0}=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}} E_{i 0}, \quad E_{t 0}=\frac{2 \eta_{2}}{\eta_{2}+\eta_{1}} E_{i 0}
$$

Reflection and Transmission Coefficients

- Define the reflection coefficient as

$$
\Gamma=\frac{E_{r 0}}{E_{i 0}}=\frac{\eta_{2}-\eta_{1}}{\eta_{2}+\eta_{1}}
$$

- Define the transmission coefficient as

$$
\tau=\frac{E_{t 0}}{E_{i 0}}=\frac{2 \eta_{2}}{\eta_{2}+\eta_{1}}
$$

Oblique Incidence

$$
z=0
$$

Perpendicular Polarization

$$
\overrightarrow{\boldsymbol{E}}_{\boldsymbol{E}}
$$

B.C.'s at $z=0$

1) $\bar{E}_{t a n}$ coutinuous $\left(\overline{E_{i}}+\overline{E_{r}}=\overline{E_{t}}\right)$

$$
\begin{aligned}
& \overline{E_{i}}=\bar{y} E_{i} \exp \left(-j \beta_{1 x} x\right) \exp \left(-j \beta_{1 z} z\right) \\
& \overline{E_{r}}=\bar{y} \Gamma E_{i} \exp \left(-j \beta_{r x} x\right) \exp \left(j \beta_{r z} z\right) \\
& \overline{E_{t}}=\bar{y} \tau E_{i} \exp \left(-j \beta_{2 x} x\right) \exp \left(-j \beta_{2 z} z\right)
\end{aligned}
$$

$$
\begin{equation*}
\exp \left(-j \beta_{1 x} x\right)+\Gamma \exp \left(-j \beta_{r x} x\right)=\tau \exp \left(-j \beta_{2 x} x\right) \tag{A}
\end{equation*}
$$

$$
\begin{align*}
& \beta_{1 x}=\beta_{r x}=\beta_{2 x} \\
& \quad 1+\Gamma=\underset{\text { Dr.Aparma Tripathi }}{\tau} \tag{B}
\end{align*}
$$

B.C.'s at $\mathrm{z}=0$

2) $\bar{H}_{\tan }$ continuous $\left(\bar{H}_{i}+\bar{H}_{r}=\bar{H}_{t}\right)$
$-\frac{\cos \theta_{i}}{\eta_{1}}+\frac{\cos \theta_{i}}{\eta_{1}} \Gamma=-\frac{\cos \theta_{t}}{\eta_{2}} \tau$

With $1+\Gamma=\tau$,
reflection coefficient

$$
\Gamma_{\perp}=\frac{\eta_{2} / \cos \theta_{t}-\eta_{1} / \cos \theta_{i}}{\eta_{2} / \cos \theta_{t}+\eta_{1} / \cos \theta_{i}}
$$

transmission coefficient

Parallel Polarization

$\mathrm{E}=\mathrm{H} \eta$

$\overline{E_{i}}=\left(\bar{x} \cos \theta_{i}-\bar{z} \sin \theta_{i}\right) H_{i} \eta_{1} \exp \left(-j \beta_{1 x} x\right) \exp \left(-j \beta_{1 z} z\right)$
$\overline{E_{r}}=\left(-\bar{x} \cos \theta_{r}-\bar{z} \sin \theta_{r}\right) H_{r} \eta_{1} \exp \left(-j \beta_{r x} x\right) \exp \left(j \beta_{r z} z\right)$

$$
\frac{H_{r}}{H_{i}}=-\Gamma \quad \frac{H_{t}}{H_{i}}=\frac{1 / \eta_{2}}{E_{i} /}=\tau \frac{\eta_{1}}{\eta_{2}}
$$

B.C.'s at $\mathrm{z}=0$

1) $\bar{H}_{\tan }$ coutinuous $\left(\bar{H}_{i}+\bar{H}_{r}=\bar{H}_{t}\right)$

$$
\begin{aligned}
& \overline{H_{i}}=\bar{y} H_{i} \exp \left(-j \beta_{1 x} x\right) \exp \left(-j \beta_{1 z} z\right) \\
& \overline{H_{r}}=\bar{y} H_{r} \exp \left(-j \beta_{r x} x\right) \exp \left(j \beta_{r z} z\right) \\
& \overline{H_{t}}=\bar{y} H_{t} \exp \left(-j \beta_{2 x} x\right) \exp \left(-j \beta_{2 z} z\right)
\end{aligned}
$$

$$
\begin{gathered}
\exp \left(-j \beta_{1 x} x\right)-\Gamma \exp \left(-j \beta_{x x} x\right)=\frac{\eta_{1}}{\eta_{2}} \tau \exp \left(-j \beta_{2 x} x\right) \\
\beta_{1 x}=\beta_{r x}=\beta_{2 x} \\
1-\Gamma=\frac{\eta_{1}}{\eta_{2}} \quad \ldots .(\mathbf{A})
\end{gathered}
$$

B.C.'s at $z=0$
2) $\bar{E}_{\text {an }}$ continuous
tan

reflection coefficient

transmission coefficient

