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Boundary Conditions 

 Boundary conditions are the relations between the 

electromagnetic field vectors on two sides of the interface 

that separates the two media. 

 

 

These conditions are dictated by types of material by which 

media are made of. 
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Electrostatic Boundary Conditions 

• At any point on the boundary, 

– the components of E1 and E2 tangential to the 

boundary are equal 

 

 

 

– the components of D1 and D2 normal to the 

boundary are equal 

 

t t E E 2 1 
= 

n n D D 2 1 
= 
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Magnetic Boundary Conditions 

• The normal component of B1 and B2 continuous across a 

interface: 

 

 

 

• The tangential component of a H1 and H2 to the 

boundary are equal 

n n B B 2 1 
= 

Hayt   p-281 

 

t t H H 2 1 
= 
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Reflection and Transmission of Waves at 

Planar Interfaces 

medium 2 medium 1 

incident wave (i) 

reflected wave (r)  

 

Transmitted wave(t) 

1. Reflection of uniform plane waves by perfect dielectric for 

normal incidence. 

Consider medium 1 and medium 2 let us place the boundary between the two 

media. 
A plane em wave is incident normally on the surface of a perfect 

dielectric. 

Part of energy is transmitted and part of it is reflected. 

 

X=0 

A traveling E wave approaches the interface x=0 from region 

1,x<0. 

Ei and Er are at x=-0, while Et is at x=+0 
3/7/2013 Dr. Aparna Tripathi 



medium 2 medium 1 

incident wave 

reflected wave 

transmitted 

wave 

Let (1,1) and (2,2) are the dielectric 

permittivities and magnetic permeabilities of 

two medium 1 and medium 2 at left and right 

of the plane x=0.  

Consider the case of plane em wave travelling in x direction and polarized in y 

direction and is incident normally an the interface from left. 

 

It give rise to a reflected wave which travels back to the left in medium 1 and 

transmitted wave which continues on the right in medium 2. 

Ei, Hi 

Et, Ht 

Er, Hr 

(1,1) (2,2) 
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In this case E and H are tangential to the interface 
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According to the boundary conditions at the interface for the continuity of tangential 

components of E and H, the electric and magnetic fields on each side of the boundary 

are same. 
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The electric ad magnetic fields associated with incident, reflected and transmitted em 

waves are related as 

...3          

...2        

...1           

2

1

1

tt

rr

ii

HZE

HZE

HZE

=

=

=

211

  ,  ,   
Z

E
H

Z

E
H

Z

E
H t

t
r

r
i

i ===

3 and 2 1, eq from

3/7/2013 Dr. Aparna Tripathi 



...6         
211 Z

E

Z

E

Z

E tri =

5 eqin  ,, of  value theputting tri HHH

Putting the value of Et from eq 4 in eq 6 
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Similarly the reflection and transmission coefficient for magnetic field intensity H 

is obtained  
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intensity field electricfor  cofficienton Transmissi
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In general equations for E can be written as 
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Eq (7),(8),(9) and (10) are valid for a boundary between any two materials 

Here Eio, Ero and Eto are the electric field intensities at x=0 and 𝛾1,𝛾2 are the 
propagation constants in 1st and 2nd medium 
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The equations for H can be written as 

Here Hio, Hro and Hto are the magnetic field intensities at x=0 
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Electrostatic Boundary Conditions 

Consider a rectangular closed path abcda of infinitesimal area in the plane 

normal to the boundary and with its side ab and cd parallel to and on either 

side of th boundary. 

Since the line integral  E.dl for closed path is zero. 

Here considering the closed path abcd then 

0
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E1t and E2t are components of electric field intensities then 
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Hence  any point on the boundary the components of E1 and E2 tangential to 

the boundary are equal 

If medium 1 is conductor then E1t =0 then   

02 =tE
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Boundary Conditions for Displacement vector D 

Consider a cylindrical bax ABCD which intersect the two dielectric media 

having permittivities 1 and 2. 

Supposing dS is the area of each plane and which is also the area of the 

boundary enclosed by the cylinder. 

Now the charge enclosed by cylinder will be 𝝆= ds  

For finding the boundary conditions for D, apply Gauss’s law  

Here cylinder will behave like Gaussian surface. 

 = dsdsD 

dsDdsDdsD
curvedlowerupper

...      =
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Let h⟶ 0 then the curved path vanishes 

 =
slowerupper

dsdsDdsD ..
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