POISSON'S & LAPLACE'S EQUATION

$$\nabla^2 \Phi = -\rho_v / \epsilon$$

Poisson's equation

$$\nabla^2 \Phi = 0$$
 Laplace's equation

POISSON AND LAPLACE EQUATIONS

$$\mathbf{D} = \boldsymbol{\varepsilon} \mathbf{E} \qquad \dots \dots (1) \qquad \qquad \mathbf{\nabla} \cdot \mathbf{D} = \boldsymbol{\rho}_{\boldsymbol{\omega}} \qquad \dots \dots (2)$$

Substituting Equation 1 into 2

Since $\mathbf{E} = -\nabla \Phi$, the last result can be written

$$\boldsymbol{\nabla} \cdot (\boldsymbol{\varepsilon} \boldsymbol{\nabla} \Phi) = -\boldsymbol{\rho}_1 \qquad \dots \dots (4)$$

Now by vector identity $\nabla \bullet [a \nabla b] = \nabla a \bullet \nabla b + a \nabla^2 b$

$$\boldsymbol{\varepsilon} \nabla \cdot (\nabla \Phi) + \nabla \Phi \cdot \nabla \boldsymbol{\varepsilon} = -\rho$$
$$\boldsymbol{\varepsilon} \nabla^2 \Phi + \nabla \Phi \cdot \nabla \boldsymbol{\varepsilon} = -\rho$$
.....(5)

In the special case where the dielectric is homogeneous, ε is not a function of position, $\nabla \varepsilon \equiv 0$, and Equation (5) reduces to

$$\nabla^2 \Phi = -\rho/\epsilon$$

i

Poisson's equation

For Charge Free region ($\rho = 0$) Poisson's equation reduces to

$$\nabla^2 \Phi = 0$$
 Laplace's equation

Cartesian coordinate system

$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$$

Cylindrical Coordinate System

$$\nabla^{2}V = \frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial V}{\partial r}\right) + \frac{1}{r}\frac{\partial^{2}V}{\partial \phi^{2}} + \frac{\partial^{2}V}{\partial z^{2}} = 0$$

Spherical Coordinate System

$$\nabla^2 V = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial^2 V}{\partial \phi^2} = 0$$

Example:

Consider a parallel conductor where V = 0 at z = 0 and V = 100Volts at z = d. Calculate potential as a Function of z.

$$\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0$$

Since V is not the function of x and y so Laplace's equation reduces to

$$\frac{\partial^2 V}{\partial z^2} = 0$$

$$\mathbf{V} = \mathbf{A} \mathbf{z} + \mathbf{B}$$

Using given Conditions V=0 at z=0 Provide B=0V=100 at z=d gives A=100/d

$$V = 100(z/d)$$
 Volts

Two ways of calculating **B** produced by currents:

- i) Biot-Savart Law: Field of a "current element" (analogous to a point charge in electrostatics).
- ii) Ampère's Law: An integral theorem similar to Gauss's law.

Biot-Savart Law

Current element of length dl carrying current (I) produces a magnetic field dB at point P:

 μ_0 – permeability of free space $\mu_0 = 4\pi \times 10^{-7}$ Wb/A.m

Ampere's law – The Idea

$$\oint \vec{\mathbf{B}} \cdot d\vec{\boldsymbol{l}} = \mu_0 I_{enc}$$

Gauss's Law – The Idea

$$\Phi_E = \oint_{\substack{\text{closed}\\\text{surfaceS}}} \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{q_{in}}{\varepsilon_0}$$

Ampere's law

 Ampere's law states that the line integral of B·dl around any closed loop is proportional to the total current passing through any surface that is bounded by the closed loop:

$$\oint_{c} B \bullet dl = \mu_0 I_{enc}$$

Applying Ampere's Law

1. Identify regions in which to calculate B field 2. Choose Amperian Loops S: Symmetry 3. Calculate $\mathbf{q} \mathbf{\vec{B}} \cdot d\mathbf{\vec{l}}$ 4. Calculate current enclosed by loop S Apply Ampere's Law to solve for B $\mathbf{d}\vec{\mathbf{B}}\cdot d\vec{l} = \mu_0 I_{enc}$

Example: Infinite Wire

A cylindrical conductor has radius R and a uniform current density with total current I

Find B everywhere

Two regions: (1) outside wire (r ≥ R) (2) inside wire (r < R)

Example: Wire of Radius R

$$B_{in} = \frac{\mu_0 Ir}{2\pi R^2} \qquad B_{out} = \frac{\mu_0 I}{2\pi r}$$

Maxwell's Equations

E = electric field **D** = electric displacement H = magnetic field **B** = magnetic flux density ρ = charge density j_c = current density μ_0 (permeability of free space) = $4\pi \ 10^{-7}$ ε_0 (permittivity of free space) = 8.854 10⁻¹² c (speed of light) = $2.99792458 \ 10^8 \text{ m/s}$

In vacuum

$$\vec{D} = \varepsilon_0 \vec{E}$$

$$\vec{B} = \mu_0 \vec{H}$$
 and $\varepsilon_0 \mu_0 = \frac{1}{c^2}$
so $\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}$
 $\nabla \cdot \vec{B} = 0$
 $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$
 $\nabla \times \vec{B} = \mu_0 \vec{j}_c + \frac{1}{c^2} \frac{\partial \vec{E}}{\partial t}$

Maxwell's Equations in free space

Volume charge density $\rho = 0$ and Current density J = 0

 $\nabla \cdot \vec{D} = 0 \qquad \dots (1)$ $\nabla \cdot \vec{B} = 0 \qquad \dots (2)$ $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \qquad \dots (3)$ $\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t} \qquad \dots (4)$

Now according Gauss Divergence Theorem: $\oint E \cdot dS = \int_{V} (\nabla \cdot E) \cdot dV$ _____ 2

> Now from () k (2) $\int_{V} (\nabla \cdot E) dV = \int_{V} f dV$ $V \in \delta$

Maxwell EQUATION 2 $\nabla \cdot B = 0$ Proof: According Bio Savart's Law $dB = \mu_0 I dl sin \theta$ $\Delta t = \pi/2$ 4172 dB = Mo Idl $4\pi r^2$ $B = \frac{\mu_0}{4\pi} \oint \frac{T}{r^2} dl$

$$I = \oint J \cdot dS$$

$$B = \frac{\mu_0}{4\pi} \qquad \oint \oint J \cdot dS \qquad dl \qquad (2)$$

$$Now \quad Gauss \quad Divergence \quad \text{Theorem} .$$

$$\oint J \cdot dS = \int_{V} \nabla \cdot J \quad dV$$

$$B = \frac{\mu_0}{4\pi} \qquad \oint \int_{V} \frac{\nabla \cdot J \quad dV}{\gamma^2} \quad dl$$

$$Now \quad taking \quad Divergence \quad Both \quad Side$$

$$\nabla \cdot B = \frac{\mu_0}{4\pi} \oint \int_{V} \nabla \cdot (\nabla \cdot J) dV dl$$

 γ^2

as
$$\nabla \cdot (\nabla, J) = 0$$

scalar
always $\Rightarrow \nabla \cdot (scalar) = 0$
 $\Rightarrow \quad \nabla \cdot B = 0$
Hence Proved.

Maxwell Equation 3 $\nabla X E = -\frac{dB}{dt}$ Proof : electromotive force round a circuit The $= \oint F \cdot dl$ F= VE = p v E.dl 9 = 1 Caulomb

$$E \cdot M \cdot F \cdot = \oint E \cdot dl \qquad (1)$$

$$Now '' faraday daw''$$

$$E \cdot M \cdot F \cdot induced in a closed loop is given by$$

$$E \cdot M \cdot F \cdot = -\frac{d\phi}{dt} \qquad \phi = Magnetic flux$$

$$\phi = \int B \cdot dS$$

$$E \cdot M \cdot F \cdot = -\frac{d}{dt} \int B \cdot dS - (2)$$

$$dt$$

Now By Stokes theorem $\oint E \cdot dl = \int (\forall x E) \cdot dS - (3)$ from () & (3) $E \cdot M \cdot F = \int (\nabla X E) \cdot dS - (4)$ Now from (2) & (4). $\int (\forall x E) \cdot ds = \int -\frac{dB}{dF} \cdot ds$

Maxwell EQUATION - 4 $\nabla XH = J_c + \frac{\partial D}{\partial +}$ According Ampere circuital Law. Proof: 9 H. dl = Iin In = J J.ds \$ H. al = J J. ds - D Now By stokes Theorem. \$ H. de = J (XXH) · dx - 2

from (1)
$$k$$
 (2)
 $\nabla XH = J_c$ (3)
Now take divergence of equation (3) both side
 $\nabla \cdot (\nabla XH) = \nabla \cdot J_c \Rightarrow 0$ always
 U
always (3ero)
But the from the continuity equation:
 $\nabla \cdot J = -\frac{\partial f}{\partial t}$

 $\nabla \cdot J = 0$ only if $\frac{\partial f}{\partial t} = 0$ that mean m. but this is not always. $\frac{\partial f}{\partial t} \neq 0$ that mean airrent density is not varying with time so equation (3) does not provide the complete Proof Maxwell assumed that the definition of current density J is incomplete and some thing say Jd must be added to it then total current density $J = J_{c} + J_{d}$

and and become

Now $\phi H \cdot dl = J_c + J_d$ $\nabla XH = J_c + J_d$ Now taking divergence both side $\nabla \cdot (\nabla XH) = \nabla \cdot (J_c + J_d)$ Ó $\Delta \cdot J_{C} + \Delta \cdot J_{q} = 0$ V. Jd = - V. Jc Now from continuity equation $\nabla \cdot J_c = -\partial f$ dt

$$\nabla \cdot Jd = \frac{\partial f}{\partial f}$$
Now from Maxwell equation (1)

$$\nabla \cdot D = f$$

$$\nabla \cdot Jd = \frac{\partial}{\partial t} \nabla \cdot D$$

$$\partial t$$

$$\nabla \cdot Jd = \nabla \cdot \frac{\partial D}{\partial t}$$

$$\frac{\partial}{\partial t} = \frac{\partial D}{\partial t}$$
so equation (3) Modified to

$$\nabla XH = J_{c} + \frac{\partial D}{\partial t}$$