POISSON'S \& LAPLACE'S EQUATION

$$
\begin{array}{l|l}
\nabla^{2} \Phi=-\rho_{v} / \varepsilon & \text { Poisson's equation }
\end{array}
$$

$$
\nabla^{2} \Phi=0 \quad \text { Laplace's equation }
$$

POISSON AND LAPLACE EQUATIONS

$$
\begin{equation*}
\mathbf{D}=\varepsilon \mathbf{E} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \mathbf{D}=\rho \tag{2}
\end{equation*}
$$

Substituting Equation 1 into 2

$$
\begin{equation*}
\nabla \cdot \varepsilon \mathbf{E}=\rho \tag{3}
\end{equation*}
$$

Since $\mathbf{E}=-\boldsymbol{\nabla} \Phi$, the last result can be written

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot(\boldsymbol{\varepsilon} \nabla \Phi)=-\rho_{1} \tag{4}
\end{equation*}
$$

Now by vector identity $\quad \nabla \bullet[a \nabla b]=\nabla a \bullet \nabla b+a \nabla^{2} b$

$$
\varepsilon \nabla \cdot(\nabla \Phi)+\nabla \Phi \cdot \nabla \varepsilon=-\rho
$$

$$
\begin{equation*}
\varepsilon \nabla^{2} \Phi+\nabla \Phi \cdot \nabla \varepsilon=-\rho \tag{5}
\end{equation*}
$$

In the special case where the dielectric is homogeneous, ε is not a function of position, $\nabla \varepsilon \equiv 0$, and Equation (5) reduces to

$$
\nabla^{2} \Phi=-\rho / \varepsilon \quad \text { Poisson's equation }
$$

For Charge Free region ($\rho=0$) Poisson's equation reduces to

$$
\nabla^{2} \Phi=0 \quad \text { Laplace's equation }
$$

Cartesian coordinate system

$$
\nabla^{2} V=\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0
$$

Cylindrical Coordinate System

$$
\nabla^{2} V=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial V}{\partial r}\right)+\frac{1}{r} \frac{\partial^{2} V}{\partial \phi^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0
$$

Spherical Coordinate System

$$
\nabla^{2} V=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial V}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial V}{\partial \theta}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial^{2} V}{\partial \phi^{2}}=0
$$

Example:

Consider a parallel conductor where $\mathrm{V}=\mathbf{0}$ at $\mathrm{z}=\mathbf{0}$ and $\mathrm{V}=100$ Volts at $\mathbf{z}=\mathbf{d}$. Calculate potential as a Function of \mathbf{z}.

$$
\frac{\partial^{2} V}{\partial x^{2}}+\frac{\partial^{2} V}{\partial y^{2}}+\frac{\partial^{2} V}{\partial z^{2}}=0
$$

Since V is not the function of x and y so Laplace's equation reduces to

$$
\begin{aligned}
& \frac{\partial^{2} V}{\partial z^{2}}=0 \\
& \mathbf{V}=\mathbf{A} \mathbf{z}+\mathbf{B}
\end{aligned}
$$

Using given Conditions $V=0$ at $z=0$ Provide $B=0$

$$
V=100 \text { at } z=d \text { gives } A=100 / d
$$

$$
V=100(z / d) \text { Volts }
$$

Two ways of calculating B produced by currents:
i) Biot-Savart Law: Field of a "current element" (analagous to a point charge in electrostatics).
ii) Ampère's Law: An integral theorem similar to Gauss's law.

Biot-Savart Law

Current element of length dl carrying current (I) produces a magnetic field dB at point P :

μ_{0} - permeability of free space
$\mu_{0}=4 \pi \times 10^{-7} \mathrm{~Wb} / \mathrm{A} . \mathrm{m}$

Ampere's law - The Idea

$\oint \overrightarrow{\mathbf{B}} \cdot d \boldsymbol{l}=\mu_{0} I_{\text {enc }}$

Gauss's Law - The Idea

Ampere's Law: The Idea

In order to have a B field around a loop, there must be current punching through the loop

Ampere's law

- Ampere's law states that the line integral of B.dl around any closed loop is proportional to the total current passing through any surface that is bounded by the closed loop:

$$
\oint_{c} B \bullet d l=\mu_{0} I_{e n c}
$$

Applying Ampere's Law

1. Identify regions in which to calculate B field
2. Choose Amperian Loops S: Symmetry
3. Calculate $\oint \overrightarrow{\mathbf{B}} \cdot d \vec{l}$
4. Calculate current enclosed by loop S
5. Apply Ampere's Law to solve for B

$$
\oint \overrightarrow{\mathbf{B}} \cdot d \vec{l}=\mu_{0} I_{e n c}
$$

Example: Infinite Wire

A cylindrical conductor has radius R and a uniform current density with total current I

Find B everywhere

Two regions:
(1) outside wire $(r \geq R)$
(2) inside wire $(r<R)$

Example: Wire of Radius R

$$
B_{\text {in }}=\frac{\mu_{0} I r}{2 \pi R^{2}} \quad B_{\text {out }}=\frac{\mu_{0} I}{2 \pi r}
$$

Maxwell's Equations

In vacuum

$$
\begin{aligned}
& \boldsymbol{E}=\text { electric field } \\
& \boldsymbol{D} \text { = electric displacement } \\
& \boldsymbol{H} \text { = magnetic field } \\
& \boldsymbol{B} \text { = magnetic flux density } \\
& \rho=\text { charge density } \\
& \boldsymbol{j}_{c}=\text { current density } \\
& \mu_{0} \text { (permeability of free space) }=4 \pi 10^{-7} \\
& \varepsilon_{0}(\text { permittivity of free space })=8.85410^{-12} \\
& c(\text { speed of light })=2.9979245810^{8} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{l}
\vec{D}=\varepsilon_{0} \vec{E} \\
\vec{B}=\mu_{0} \vec{H}
\end{array}\right\} \quad \text { and } \quad \varepsilon_{0} \mu_{0}=\frac{1}{c^{2}} \\
& \text { so } \quad \nabla \cdot \vec{E}=\rho / \varepsilon_{0} \\
& \nabla \cdot \vec{B}=0 \\
& \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \nabla \times \vec{B}=\mu_{0} \vec{j}_{c}+\frac{1}{c^{2}} \frac{\partial \vec{E}}{\partial t}
\end{aligned}
$$

Maxwell's Equations in free space

Volume charge density $\rho=0$ and Current density $\mathrm{J}=0$

$$
\begin{align*}
& \nabla \cdot \vec{D}=0 \tag{1}\\
& \nabla \cdot \vec{B}=0 \tag{2}\\
& \nabla \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \tag{3}\\
& \nabla \times \vec{H}=\frac{\partial \vec{D}}{\partial t} \tag{4}
\end{align*}
$$

Maxwell Equation 1.

$$
\nabla \cdot E=\frac{P}{\epsilon_{0}}
$$

Proof: According Gauss Law:

$$
\oint E \cdot d s=\frac{V_{i n}}{\epsilon_{0}}
$$

where $v_{\text {in }}=\int_{V} \rho d v$

$$
\begin{equation*}
\oint E \cdot d s=\frac{\int_{v} \rho d v}{\epsilon_{0}} \tag{1}
\end{equation*}
$$

Now according Gauss Divergence Theorem:

$$
\oint E \cdot d \&=\int_{V}(\nabla \cdot E) \cdot d V
$$

Now from (1) \& (2)

$$
\begin{aligned}
& \int_{V}(\nabla \cdot E) d V=\int_{V} \frac{\rho}{\epsilon_{0}} d V \\
& \Rightarrow \nabla \cdot E=\frac{\rho}{\epsilon_{0}} \quad \text { Hence Proved }
\end{aligned}
$$

MaXWELL EQUATION 2

$$
\nabla \cdot B=0
$$

Proof: According Bio Savant's Law

$$
\begin{align*}
& d B=\frac{\mu_{0} I d l \sin \theta}{4 \pi r^{2}} \quad \text { at } \theta=\pi / 2 \\
& d B=\frac{\mu_{0} I d l}{4 \pi r^{2}} \\
& B=\frac{\mu_{0}}{4 \pi} \oint \frac{I}{r^{2}} d l \quad \text { (1) } \tag{1}
\end{align*}
$$

$$
\begin{gather*}
I=\oint J \cdot d S \\
B=\frac{\mu_{0}}{4 \pi} \oint \frac{\oint J \cdot d S}{r^{2}} d l
\end{gather*}
$$

Now Gauss Divergence Theorem.

$$
\begin{aligned}
& \oint J \cdot d S=\int_{V} \nabla \cdot J d v \\
& B=\frac{\mu_{0}}{4 \pi} \oint \int_{V} \frac{\nabla \cdot J d V}{r^{2}} d l
\end{aligned}
$$

Now taking Divergence Both side

$$
\begin{aligned}
& \nabla \cdot B=\frac{\mu_{0}}{4 \pi} \oint \int_{V} \frac{\nabla \cdot(\nabla \cdot J) d V}{r^{2}} d 川 \\
& \text { as } \nabla \cdot(\underset{v r}{\nabla \cdot J})=0 \\
& \text { scalar } \\
& \text { always } \Rightarrow \nabla \cdot(\text { scalar })=0 \\
& \Rightarrow \quad \nabla \cdot B=0 \text { 目 }
\end{aligned}
$$

Hence Proved．

Maxwell Equation 3

$$
\nabla \times E=-\frac{d B}{d t}
$$

Proof:
The electromotive force round a circuit

$$
\begin{aligned}
& =\oint_{C} F \cdot d l \\
& =\oint_{C} q E \cdot d \lambda \quad q=q E
\end{aligned}
$$

$$
\begin{equation*}
E \cdot M \cdot F \cdot=\oint E \cdot d l \tag{1}
\end{equation*}
$$

Now "faraday Law"
E.M.F. induced in a closed loop is given by

$$
\begin{align*}
E \cdot M \cdot F: & =-\frac{d \phi}{d t} \quad \phi=\text { Magnetic flux } \\
\phi & =\int B \cdot d S \\
E \cdot M \cdot F \cdot & =-\frac{d}{d t} \int B \cdot d S-2 \tag{2}
\end{align*}
$$

Now By stokes theorem

$$
\oint E \cdot d l=\int_{S}(\nabla \times E) \cdot d S-3
$$

from (1) \& (3)

$$
E \cdot M \cdot F=\int_{S}(\nabla \times E) \cdot d S-
$$

Now from (2) $\&$ (4).

$$
\int_{s}(\nabla \times E) \cdot d s=\int_{s}-\frac{d B}{d t} \cdot d s
$$

$$
\nabla \times E=-\frac{d B}{d t}
$$

MaXWELL EQIJATION-4

$$
\nabla \times H=J_{C}+\frac{\partial D}{\partial t}
$$

Proof: According Ampere circuital Law.

$$
\begin{align*}
& \quad \oint H \cdot d l=I_{\text {in }} \quad I_{\text {in }}=\int_{S} J_{C} \cdot d s \\
& \oint H \cdot d l=\int_{S} J_{C} \cdot d s=(1) \tag{1}
\end{align*}
$$

Now By stokes Theorem:

$$
\oint H \cdot d l=\int_{s}(\nabla \times H) \cdot d s
$$

from (1) $<$ (2)

$$
\begin{equation*}
\nabla \times H=J_{c} \tag{3}
\end{equation*}
$$

Now take divergence of equation (3) both side $\nabla \cdot(\nabla \times H)=\nabla \cdot J_{c} \Rightarrow 0$ always
(1). always (zero)

But the from the continuity equation:

$$
\nabla \cdot J=-\frac{\partial f}{\partial t}
$$

$\nabla \cdot J=0$ only if $\frac{\partial l}{\partial t}=0$
that mean current density is not varying with time but this is not always.

$$
\frac{\partial \rho}{d t} \neq 0
$$

so equation (3) does not provide the complete Proof maxwell assumed that the definition of current density J is incomplete and some thing say J_{d} must be added to it then total current density

$$
J=J_{c}+J_{d}
$$

Now

$$
\begin{aligned}
& \phi H \cdot d l=J_{c}+J_{d} \\
& \nabla \times H= J_{c}+J_{d}
\end{aligned}
$$

Now taking divergence both side

$$
\begin{gathered}
\nabla \cdot(\nabla \times H)=\nabla \cdot\left(J_{c}+J_{d}\right) \\
0 \\
\nabla \cdot J_{c}+\nabla \cdot J_{d}=0 \\
\nabla \cdot J_{d}=-\nabla \cdot J_{c}
\end{gathered}
$$

Now from continuity equation

$$
\nabla \cdot J_{c}=-\frac{\partial \rho}{d t}
$$

$$
\nabla \cdot J d=\frac{\partial f}{d f}
$$

Now from Max well equation (1)

$$
\begin{aligned}
& \nabla \cdot D=1 \\
& \nabla \cdot J_{d}= \frac{\partial}{\partial t} \nabla \cdot D \\
& \nabla \cdot J_{d}= \nabla \cdot \frac{\partial D}{\partial t} \\
& \Rightarrow \quad J_{d}=\frac{\partial D}{\partial t}
\end{aligned}
$$

so equation (3) Modified to

$$
\nabla \times H=J_{C}+\frac{\partial D}{d t}
$$

