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Outline of the Course

. Electromagnetic Theory
. Thermodynamics
. Quantum Mechanics

. Solid State Physics or Condensed Matter Physics



Electromaqgnetic Theory

* Fundamentals of Vector Calculus which include, fields, gradient, divergence
and curl

* Coulomb’s law, electric flux and, Gauss’s law, its proof for the charge inside
and outside the Gaussian surface, applications of Gauss law for spherically and
cylindrically symmetric problems

» Electric field due to charged conductor, force per unit area on the surface of the
charged conductor, treatment of electrostatic problems by solution of laplace
and poisson’s equations

o Biot-Savart law, Ampere’s law, Maxwell’s equations (derivations) in free space

and dielectric media



Electromagnetic Theory continued - - -

* Plane electromagnetic waves in free space, transverse nature, wave
Impedance and energy flow

* Energy in electromagnetic waves (Poynting vector and Poynting theorem)

» Derivations of expressions for energy density and energy flux (Poynting
vector) in an electromagnetic field, radiation pressure, boundary conditions
across the medium (without proof)

* Propagation of EM waves (i.e., light) through boundary- reflection,
refraction, absorption (normal incidence), oblique incidence and total

internal reflection.



Thermodynamics

Review of thermodynamical systems and processes, zeroth law of
thermodynamics, first law of thermodynamics

Specific heat relation, isothermal, adiabatic, isochoric and isobaric processes, gas
equation during an adiabatic process, slopes of adiabatic and isothermals

Work done during an isothermal and adiabatic process, relation between adiabatic
and isothermal elasticities, second law of thermodynamics, concept of entropy,
calculation of entropy for an ideal gas (pressure volume and temperature),
principle of increase of entropy or degradation of energy

Reversible and irreversible processes, Carnot cycle and Carnot engine,
refrigerator, rankine cycle (Steam engine), Otto cycle(Petrol engine), diesel
engine, phase transitions, Clausius-Cleyperon equation

Thermodynamic Potentials( Internal energy, Enthalpy, Helmholtz free energy,

Gibb’s free energy, Maxwell’s equations 5



Quantum Mechanics

 Wave particle duality, de-Broglie concept of matter waves, wavelength
expression for different cases, Davisson & Germer experiment, G.P. Thomson
experiment, interpretation of Bohr’s quantization rule, concept of wave packet

» Phase and group velocities and their derivations for a matter wave, Heisenberg
uncertainty principle. experimental illustration (Position of a particle by high
power Microscope, Diffraction of electron beam by a single slit), applications
of uncertainty principle (Non existence of electron in the nucleus)

» Radius of the Bohr’s first orbit, zero point energy of harmonic oscillator, finite

width of spectral lines



Quantum Mechanics continued - - -

 Time-independent and time-dependent Schr'odinger wave equation,
physical significance of wave function.

 Normalized and orthogonal wave functions, operators and their
representation, expectation value

 Particle in one dimensional box, extension to 3-dimensional box, potential

barrier and harmonic oscillator



Solid State Physics

o Lattice points and space lattice, Basis and crystal structure, unit cell and
primitive cell, seven crystal systems and fourteen Bravais space lattice,
coordination number, nearest neighbor distance, atomic radius, atomic packing
factor in crystal structure, calculation of lattice constant, lattice planes and
Miller indices

» Separation between lattice planes, derivation and examples, X-ray diffraction,
Bragg’s law of X-ray diffraction, Bragg’s X-ray spectrometer, powder crystal
method, rotating crystal method, basic ideas of bonding

* Bonding in solids



Solid State Physics continued - - -

» Electronic conduction in metals, classical free electron theory, quantum theory
of free electrons, band theory of solids, Kronig-Penny model and its
Interpretation

« Brillouin zones, distinction between metals, semiconductors and insulators,
Intrinsic and extrinsic semiconductors

 Carrier concentration in thermal equilibrium in intrinsic semiconductor, Fermi
level and energy band diagram in intrinsic semiconductor, energy band diagram
and Fermi level in extrinsic semiconductors, effect of temperature on extrinsic
semiconductor

« Electrical conductivity of intrinsic semiconductor and extrinsic semiconductor,

Hall effect, allied parameters and its applications



Books Recommended

Electromagnetic Theory

e Introduction to Electrodynamics By: David J. Griffiths
» Schaum’s Outline of Theory and Problems of Electromagnetics
» Classical Electrodynamics By: J.D. Jackson

Thermodynamics

 Heat and Thermodynamics: Mark Waldo Zemansky, Richard Dittman

Quantum Mechanics

* Perspectives of Modern Physics, or Concepts of Modern Physics, By: Arthur Beiser
« Schaum’s Outline of Theory and Problems of Quantum Mechanics

e Quantum Mechanics By: L.I. Schiff

Solid State Physics

* Perspectives of Modern Physics, or Concepts of Modern Physics, By: Arthur Beiser

* Introduction to Solid State Physics, By: Charles Kittel
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Test detalls

Electromagnetism

. T1
[01 hr (15%)]

Y part

Thermodynamics

> T2
[1 hr 30 min (25%)]

Elements of Quantum Mechanics

, 13

Solid State Physics [02 hr (35%)]

Home assignments, - 10%; Tutorials & Regularity -10%;  Attendance - 05%

11
[80-82:01 marks; 83-85: 02 marks; 86-88: 03 marks; 89: 04 marks; 90 and above: 05 marks]



Scalars and Vectors

Acscalar 1s a number which expresses quantitv. Scalars
mav or mav not have units associated with them.

Examples: mass. volume, energy, money

Acvector 1s a quantity which has both magnitude and
direction. The magnitude ol a vector 15 a scalar.

Examples: Displacement. velocity, acceleration, electric

field
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Vector Notation

Vectors are denoted as a symbol with an arrow over the Top and Bold font

—

—

1Al = Magnitude of vector A

13



Where
A, — Magnitude of A in x direction
A, — Magnitude of A in y direction

A, — Magnitude of A in z direction

Modulus or Magnitude of A is given by

A 1=VA2Z +A2+A?

14



UNIT VECTORS

The unit vector in the Direction of Vector A'is represented
by

ay
1
|

/1Al

For All unit vectors
* Magnitude is Unity

* Provide only Direction



Vector Addition

Adding Vectors Graphically.,

Py A B

d

Arrange the
vectors i a head
to tanl fashion.,

y : ;
G+

The resultant 15 drawn
from the tail of the first
to the head of the last
VECTOT,
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Vector Subtraction

Subtracting Vectors Graphically., -
— .
b

B R
C=A-B=A+-B)

Flip one vector,

The resultant 1s drawn

from the tail of the first

1o the head of the last

VeCLor,

Then proceed to
add the vectors
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Vector Multiphcation

*\/ector multiplied by a scalar yielding a vector output
*\ector multiplied by a vector yielding a scalar output (Dot product)

 Vector multiplied by a vector yielding a vector output (Cross product)
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Vector Multiplication |

The result of vector and scalar iIs a vector!

Let A is multiplied by Scalark Then magnitude becomes k times of the A

B=kA
k>0 + ve same direction
k<0 -ve opposite direction
1<k Magnitude increases

O0<k <1 Magnitude decreases

19



Vector Multiplication |12 The Dot Product

The result of a dot product of two vectors is a scalar!

e

A-B = ABcosf

0 is an acute angle between the vectors

If 6 = 0 then dot product

—t

. A-B=AB

If 6 = 90° then dot product

Properties
A-B=0 - -
i-i=1  i-j=0
joi=1 jk=0
k-k=1 [k =0,



Vector Multiplication [1]: The Cross Product

The result of a cross product of two vectors 15 a new vecior!

{7

> |

‘Zx§‘=ABsin9
Xy z

B=|A, A A
B, B, B,

Properties

Jx;:!( ixi=0
ixk=i  jxj=0
fgxf:j kAXﬁE:U

21



Vector Multiplication 11: Right Hand Rule

Index finger in the direction of the
[irst vector,

Yhddle finger in the direction of the
second vector

Thumb pomts in the direction of the
- cross produoct.

WARNING: Make sure you
are using vour right hand!!!
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Vector Derivatives

First derivatives:
Gradient (V)
Divergence (Ve)
Curl (Vx)

Second derivatives:
The Laplacian (V?) and its relatives
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Differential Vector Operator

The vector derivative operator V (“del”)

0 _0J0 .0
V=X—+Y—+7—
X X

24



Differential Vector Operator (cont.)

There are three kinds of vector derivatives, corresponding to
the three kind of multiplications possible with vectors:

» Gradient, the analogue of multiplication by a scalar.
VA

» Divergence, the analogue of the scalar (dot) product.

—

Ve A

= Curl, the analogue to the vector (cross) product.

—

Vx A

25



The Gradient

The result of applying the del-operator on a scalar function A
Is called the gradient of A:

VA= (@ji + (@JW (@ji
X %) Ol
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Examples

o If the scalar function ¢ represents the temperature, Then, V¢ = grad

¢ Is temperature gradient or rate of change of temperature with
distance

temperature ¢ = Magnitude
V¢ = Magnitude and direction

o Let V represent the potential function then —-VV will
represent the rate of change of potential with distance.

VV=E

27



Ex.1 Given a potential function V = 2x2 + 4y V in free space find
the electric field at the origin.

m
[
I
e N\
S
N
X)
_|_
VR
|2
N\ 4
<)
_|_
7~ N\
|2
N
N)
L 1

E:—ﬁxi+4MWm

At origin
E=-49 V/m
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The Divergence

The scalar product of the del-operator and a vector function
IS called the divergence of the vector function:

= - a
O (A NN R . .
x ‘& a X & a

The divergence of a vector function is a scalar!

What is the divergence? Roughly speaking, the divergence is
a measure of how fast the field lines stretch and/or spread out.

If two objects following the direction specified by the vector
function increase their separation, the divergence of the vector
function is positive. If their separation decreases, the divergence
IS negative.

29



Ex.2. Electric field density
D= [10xyz X +5Xx°y y]
Calculate charge density at (1,1,1)

V.D=p,
—_(éjfw 7 “+(2j2 eD

pv__ 0,}( 0’3/ y ﬁZ

= (éloxyszr(inzyH.B =10yz +5x°
X oy

At (1,1,1) =15c/m3® Diverge
At (0,0,0) =0c/m3 neither diverge nor converge
At (1,-1,1) =-5c/m3 Converge
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The Curl

The curl of a vector function A is

y
%
2
A

y

:(ﬁAz_ﬁijm(&Ax_ﬁAzjy{ﬁAy_&ijz
& a & X &

X
%
X
A,

Z
%
a
A,

The curl of a vector function A Is a vector.

Roughly speaking, the curl is a measure of how fast the field-
lines of a vector field twist or bend in a direction set by the right-

hand rule It is also denote the rate of rotation of field vector at
particular point.
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The rotation will always be anticlockwise when the V x A is + ve
The rotation will always be clockwise when the V x 4 is — ve

There is no rotationis Vx 4 is=0

Ex. 3. Given A=[-yx+xy] Findthe curl A?

§><K:(§AZ—aijf({aA*—aAzj?{aAy—aA*ji
& a a & EY

VxA=27

This function has a + ve curl so rotation will be anticlockwise.

32



Physical Interpretation

Gradient : Maximum space rate change

Divergence :
Rate of separation diverging or converging field

Curl : Rotation of field

33



Different Coordinate Systems

o Cartesian (Rectangular) Coordinate System
e Cylindrical Coordinate System

e Spherical Coordinate System

34



Cartesian Coordinate System

-~
-
= P
-
-
-
-
-~ ( ’y’
-
-~
\\
-

Coordinates XY,z
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Cartesian Coordinate System (cont.)

* A point is also defined by the intersection of
three orthogonal surfaces.

z
* In cartesian coordinates the surfaces are the * > —const.
infinite planes x= const., y=cants. And z=const. | s
et
. —00<X <00 P Y ?) |
Limits ‘ e
—oo<y < 1I : : €y |
—00<Z <0 | e, | fff
i e
- |- E——
I Y

r =const.
* Yy =const.

Unit vectors have fixed directions, independent of the location of point P .



Differential Volume, Surface and Line elements

Cartesian coordinates system

Differential elements - dx, dy, dz “A
Volume dV = dx dy dz

I
Area dzﬁl ,*"‘]
x const. dA; = dy dz pr——="

y const. dA, = dx dz
z const. dA; =dx dy

|

| |

| |

| I

| |
. . . | ﬂ i B

Differential line elements —— - T“*j
2 = 2 2 2 SRR T — T Y

dl = dx- + dy + dz¢ =z dgj

37



Cylindrical Coordinate System
fZ

P (r.¢.,2)

Coordinates I',0,Z

* r is the distance from the z axis in a plane normal to the z axis
¢ Is the angle between the x axis and the projection of point P on the xy plane

* Z is the height of the cylinder 38



Cylindrical Coordinate System (cont.)

e z = const. is the infinite plane
* ¢ = const. is a half plane with its edge along the z axis
e r = const. is aright circular cylinder

A

z =const.

Limits 0<r<wx

0<p<2r
—0< Z <00
/
r =Const.
I l“x
’ oS

Tm— e - h {
|
|

>\'x |

w :-:'{_nmt\.\_m |

Each unit vector is normal to its coordinates surface and is in the direction in which th¥®
coordinate increases



Differential Volume, Surface and Line elements

Cylindrical Coordinate System
Differential elements - dr, rd¢, dz

Volume dV =rdrd¢ dz

Areas

dr const. dA; =rd¢ dz
d¢ const. dA, =dr dz
dz const. dA; =rd¢ dr :

Differential line elements S gl | ]
¥
1‘4:1{1}/t gt:

dl2 = dr? + rd(|)2 + dz? ﬂ/ I IH“‘-:lr

40



Example : 4

Use cylindrical coordinates to find the area of the curved
surface of a right circular cylinder of radius a and height h

The differential surface elementis 4 = rd¢ dz

27

Then A I rd¢dz
0

|l
o'-—-.:T

N

T

A=a| [dgdz = 27ah
0

O.-):T

27

. ] _ . anh
Its volume (for a radius r = a) is V = “‘ jrdrdqbdz
00O

V = ma‘h B



Spherical Coordinate System

~e.
~
N\
T 9
~ P
~ r
~
~~o 1 V)
~
~<.
~
~

Coordinates T,6,¢

*r is the distance from origin to the point

* ¢ is the angle between the x axis and the projection of point P on the xy plane

: : 42
* 0 is the acute angle formed from z axis to the OP



Spherical Coordinate System (cont)

“ | 1} =const.

Limits

3

- o o
|.-'"'."-. |.-'"'."-. |.-'"""-.

e
|

- =
M & &
£ |.-'"'-. M

=

@ =const.

r =const.

* ¢ = const. is a half plane with its edge along the z axis

eI =conts. is a sphere with center at origin

*© = const. is aright circular cone whose axis is the z axis and whoses
vertex is at the origin



Differential Volume, Surface and Line elements

Spherical Coordinate System
Differential elements - dr, rdo, rsin6 d¢

\Volume dV =r2sin6 dr d6 d¢
r sind de

Areas: ¢ const. dA; =rdodr
r const. dA, =r2sin6 do d¢

0 const. dA; =rsin6 dr d¢

Differential line elements ST _ﬁ/\/—@}
¥ fﬁtx i P
di2=dr2 + (rde) 2+ (rsinddg)2 , ~ o in g
44




Example 5

The component of differential area normal to a spherical surface is a, - ds

r?sin @ d@ d¢. Thus, the surface area of a sphere is

The differential surface element is ds = r2sin6do dd

w

'y 2ar
5 =J l rlsin 0dOdo = ZNFIJ sin 0 d0 = 4mwr? (m?).
8=0J¢=0 0

Its volume (for a radius r = a) is
a T 2ar i
v=[ J. J' r? sin Hdrdﬂd¢=41rj ridr,
r=0J8=0t¢=0 0
v =(43)ma® (m’).
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Component forms of vector in the three
systems

Cartesian coordinate system

A=A+ A, +A,a,

Cylindrical coordinate system

A=Ab+A4L+A4,

Spherical coordinate system

46



VECTOR OPERATIONS —RECTANGULAR COORDINATES

da o Jdo
vﬂ= H‘.\.’_ + -EI}- - + ﬂ:_"'
dx oy dz

a7



VECTOR OPERATIONS —CYLINDRICAL COORDINATES

oA 1 OA oA
VA VA), = (VA
(VA), = or’ (VA), r 0¢ (VA). = oz
VA= 1;—19{;:14;,} %}% "’}i‘“
R R e R P

48




Vector Operation - Spherical Coordinate System

oA 1 OA oA
(VA), =

VA) =—, (VA), = , =
(VA) or (VA) rsind 06 rog

2 ' OA
Veaca LACA), 1 dbinh) , 1 OA
r- or rsin@ 06 rsinf oo

0
r

e R o S Rt

49



Gauss Divergence Theorem

The flux of a vector field 4 on any closed surface S is equal to the
volume integral of the divergence of that vector field over that volume
enclosed by that surface.

50



Example 6

Show that the divergence theorem holds for the vector field A = a,/r when the
surface is that of a sphere of radius a centered at the origin. We have V + A = 1/r*

and
3{ A.dS = / V.AdV
) Vv

T 2 1 I T 2
J I —a, araz sin # dBde = J " J sin @ dr d0dd¢
¢=04a 0Jé=0

g=0 r=0t@=

dma = dm.

51



Stokes’ Theorem

The surface integral of the curl of a vector field A taken over any
surface is equal to the line integral of A around the closed periphery of
the surface

52



Example 7

Consider the portion of a sphere The surface is specified by r =4,

0=6<0.1m 0<¢ <037, and the closed path forming its perimeter is composed of
three circular arcs. We are given the field H = 6rsin ¢a, + 18rsin f cos ¢ay and are asked

to evaluate each side of Stokes™ theorem.

l l l
V x H=——(36rsm#cosf@cosgla, + —| ——6rcos¢ — 36rsindcos ¢r) Ay
rsind r\sm#

The dilferential path element L
dL =dra, +rdfa; +rsinfdga,

#;H -dL = J.(ﬁ.f":'-.:il'l da, + 18rsindcos qilﬂ¢). [,n’;- a, +rdiay; +rsinfde ﬂJ
:j6rsin ¢dr +18r° sin” 0 cos ¢d ¢

Forr=constant dr=0
0.37

= | 18r°sin’ 6 cos ¢gd¢
#;H L = f [18(4)sin0.1mcos ¢4 sin 0. 1wdep — MR 0 lmsin03r =222 A
0



GuAa L {a(A(ﬁsine) a(AQ)}+a 1{ 1 8Ar_8(rA¢)}+a¢1{a(rA9) 8(&)}

"rsind| 00  d¢ | ‘r|sind ap  ar

l l l
VxH=——(36rsinfcosfcosgla, +—| ——06rcos¢ — 36rsinfcos cp) Ay
s r\smd

Since dS = sinfdfdga,. the integral is
V3w [N
f{? x H) - dS =f f (36 cosdcosg)l6sinddi de
kY ) i

A
- .
=f :Tﬁ{%sm‘ )
i -

— 288sin” 0.17sin 037 = 222 A

B

cos ¢ dg

i

Thus. the results check Stokes™ theorem.
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Electric Force

The electric force between charges q, and q,, Is

(a) repulsive If charges have same signs
(b) attractive if charges have opposite signs

)\ Fi) 4,
5
-"'f “ ..JJF' g

Like charges repel and opposites attract I



Coulomb's Law

Force Is attractive if charges are opposite sign & repulsive if same.

56



Example 8

Two point charges Q, = 50 uc and Q, = 10 uc located at (-1,1,-3) m in
(3,1,0) m respectively. Find the force on Q,

E . 1 0,4 r
1 4 2 21
e, T
r = - 4ax -3az F = 48x 32,

5

—  (50x10° )(105)(— 4a, - 3a,

" 47{209 j(5)2 >

j = (.18)(-0.8a, —0.6a, )N

o

e

F, =(0.144a -0.108a, )N

S7



ELECTRIC FIELD INTENSITY

Electric field intensity

E=F/q



ELECTRIC FIELD OF A POINT CHARGE IN VACUUM
1T Qq
dreg r2

Coulomb’s law: ‘F‘ —

Intensity of electric field created by the charge Q

59



ELECTRIC FIELD FROM MULTIPLE CHARGES:
SUPERPOSITION PRINCIPLE
Superposition of forces: F=F, +F,+F, + ..
Therefore, for the electric field intensity

Electric field due to multiple charges Q4, Q,, Q5 efc is a vector sum of the
electric fields due to each of the charges F

60



Electric Flux @

* Flux Is a measure of the number of field lines passing through an
area

* Electric flux is the number of Electric field lines penetrating a
surface or an area.

Total Electric flux passing through the total
surface

Area=A D, = J.J.Ed;&

| Electric field lines passing through a
| surface of area A, whose normal makes
i Looan angle 0 with the field.
I
I

> Electric Flux = ® = (Ecos0)A =E - A

-+ 61




Case |. E is constant vector field
perpendicular to planar surface S of area A

Area=A D, = J.J'E dA
/H Electric Flux = ® = (Ecos0)A =E- A
I |
& —
| E[|A= 06=0
>
/f

62



Case ll: E is constant vector field directed
at angle @ to planar surface S of area A

Electric field lines passing through a surface of area A whose normal
makes an angle 6 with the field.

ENA= 6%0
4 N;qrmal

Ar=Acos 0

r,/f”ff?ﬂe Where A Is the perpendicular area
\ to the field E

/SB\ . = “E-dﬁ&

A'=Acos6 - (I)E — EA COS 9

The value of electric flux is +ve if lines of forces are diverging
The value of electric flux is -ve if lines of forces are converging?



Example 9

Find the flux of the vector field A = a,/r? out of the sphere r = a,0=0=< 7,
0= ¢= 2m We have

Flux = ﬁ.ﬁt

i

™ 2ar i
o —la’_
B=0Jp=07Tr

T 2w
Flux =L L sin 8 df d¢ = 4m.

- ds

5

+a,a’ sin 6 d6 dé,

F =i

64



Gauss’s Law — The Idea

The total “flux” of field lines penetrating any of
these surfaces is the same and depends only
on the amount of charge inside o



Gauss’s Law — The Eguation

©, = {JE-dA = qgo

closed
surfaceS

Electric flux ¢. (the surface integral of E over
closed surface S) Is proportional to charge
Inside the volume enclosed by S

Note: Integral must be over closed surface



Open and Closed Surfaces

A rectangle is an open surface — it does NOT contain a volume

A sphere Is a closed surface — it DOES contain a volume
67



Proof of Gauss’s Theorem

Q Case 1: Single positive charge inside closed surface

Let a point charge g is placed in the closed surface

—_

Consider a small area dA of the surface. Then the
S electric flux passing through surface area dA
s whose normal makes an angle ¢ with the field

surface perpendicular

—

tOE

68



Then the electric flux passing through surface area dA whose normal
makes an angle ¢ with the field

dd. =EcosgdA - (1)
dd, = . ~COS@dA - (2)
Are ¥
By definition solid angle subtended by a area dA at point O
_ dAcos¢ 4., Surface area
dov = r2 { N (radius )’ }

Therefore eq 2 reduces to

do, = -1 de
Are,




Hence the electric flux through whole of the closed surface

d ( Solid angle subtended by
4 @ the entire closed surface at an
22e0 Internal point O iIs 4x)
O, = k A
Are,
g
@ E -_
€y
D, = E dA= q

Hence the total electric flux through any closed surface is equal to 1/g,
times of total charge enclosed within the surface which is Gauss lawy,



Gauss’s Law

QO Case 2: Single positive charge outside closed surface

Electric flux through area dA,

dd, =——3 de ---(1)

A Are,

Electric flux through area dA,

do, = 1 do ---(2)
* drne,
| Total electric flux through a closed surface
Electric field lines that go in come out.
Electric field lines can begin or end inside db=dd +dbd
a region of space only when there is charge o A Ay “'(3)

In that region. 71



Putting the value of dA, and dA, from equation (1) and (2) in eq (3)

dd =1 do+|-—3 da

Are, Are,

@, =0

As there iIs no charge within the surface, the total electric
flux through the whole surface is zero

72



Applying Gauss’s Law

1. ldentify reqgions in which to calculate E field.
2. Choose Gaussian surfaces S: Symmetry

3. Calculate @, = {E-dA

4. Calculate q;,, cﬁarge enclosed by surface S
5. Apply Gauss’s Law to calculate E:

E-dA = Lz

closed
surfaceS

73



Applications of gauss’s theorem

(a) Cases of spherical symmetry

(1) Field due to point charge

Electric flux through the spherical surface

_amm ¢E=<jE-dA=EdA=E(4m2)
V- \ h
/ \
/
| q+ — - - - —\' > Charge enclosed by surface Q.. =0
E
\ O ) P
\\ // By Gauss theorem 0.
N > 4E . dA — enc
~ o = g
A 0
Electric field E at each point of surface is E4 2 L
same & directed outward A= - Xq
0
1
E = X q 74

4mr’e,



(1) Electric Field due to a charged spherical shell

Case(i) Electric Field outside the shell
(1) r>ry:
Spherical shell of radius r,, carrying a charge Q with centre O
eImagine a spherical shell of radius r concentric with the shell _

Fo
*Electic field E, at each point of surface is same & directed P
outward AT T TS

*L et the electric field at the surface be E, / g A
*Net Electric flux through the whole surface / r\\
/
2 \
¢E:4Eo.d4:Eo(4ﬂT ) { I
A \ /
By Gauss theo E . dA— Q. AN !
rem 0 = c N - _ /s
4 0 _—_-
E = 9 Charge enclosed by surface Q. = Q
Y N

Hence the electric field strength at any pt outside a charged spherical shell is same
as through the charge were placed at the centre O. 75



Case(ii) Electric Field inside the shell (r <r,)

If E; is the electric field inside the shell, then by symmetry E; is same at each
point of spherical surface and is directed outward

JE,-d4=E,(4n")
A
Net charge enclosed by spherical surface Q.= O

By Gauss theorem

O
iEi 4 €

El.47z7’2 = L><O
€9

E =0

Thus electric field strength at each point within the shell is zero 76



(1) Electric Field due to a spherically charge distribution

Case(i) Electric Field strength at an external point
(1) r>ry:

Spherical charge distribution of radius r,, carrying a charge Q with centre O
*Imagine a spherical surface of radius r concentric with the spherical charge _

«Electic field E, at each point of surface is same & directed _ -
outward
«Let the electric field at the surface be E, /
*Net Electric flux through the whole surface /
/
2
JE,-dA=E,(4m") |
y \
\

By Gauss theorem the total charge enclosed by the spherical \

surface = Q
4E0'd4: Qencl
A

&g
0
EO o 47[807"2 Ei (04 1/r2

Hence the electric field strength at any pt outside a spherical charge distributionis 77
the same as through the whole charge were concentrated at the center.




Case(ii) Electric Field strength on the surface of the spherical charge distribution

(2) r=r,

*In this case the distance of point P from the center of the charge distribution is equal
to its radius

P

Electric flux through the whole surface
2
{E-dA=E,(4m,")
A

By Gauss theorem the total charge enclosed by the spherical
surface = Q
4E dA — Qencl
A

&y

Electric Field strength on the surface of the spherical charge distribution

R

2 2
47[80]/‘0 EI (04 1/ ro 78




Case(iii) Electric Field strength inside the charge distribution
(3) r<r,

Consider a spherical surface of radius r concentric with spherical charge
Let p be the volume charge density (charge per unit volume) of uniform distribution of
spherical charge

charge 0
p — o
volume 4 3

370

«Total electric flux through the whole surface

JE,-d4=E,(4n")
A

Net charge enclosed by the Gaussian surface = ﬂ ar’ o,

3

By Gauss theorem

3p
4E,-'d4=£m—
y 3 &

e
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( )
E = : : e Y
dre,r’ | 3 4 s
7”0
\ 3 )
E 1 Or
e, 1,3

The variation of electric field
strength with the distance
from the center of spherical
symmetric charge distribution




(111) Electric Field due to a concentric spherical shells

Two concentric spherical shell of radii ry; and r,, meters bearing charges Q, and Q,

(a) Field inside the inner shell r < r,

Charge inside the shell of radius r is zero
.. Electric field intensity at P,
E=0
(b) Field between the shells ry; <r <,
Charge inside the shell of radius r is Q,
.. Electric field intensity at P,
E — 1 Ql
dre, v’

(c) Field outside both shells r > r,
Charge inside the shell of radius ris Q,; + Q,

.. Electric field intensity at P,

I 9+0

— 81
drg, ¥



(b) Cases of cylindrical symmetry

(1) Electric Field strength due to infinite line charge

» Let us consider an infinite line of positive  Gaussian
. , L :
charge with a linear charge density L =q/h

» We wish to find the E field at a distance r
from the line

» Let us now enclose this line with a cylindrical
(ausslan surface

> There are three surfaces to consider. The upper (S;) and
lower(s,) circular surfaces have normals are perpendicular
to the electric field, thus contribute zero to the flux.

82




The electric flux due to each plane faces <jE~ds —0

The electric flux due to curved surface 4'E -ds = E2mrh

S3

Now according the Gauss law
&, EcJA dA = q
g, E(2mrh) = Ah
A

2TTE 1

E_

Thus the electric field strength is inversely proportional to r.
83



(1) Electric Field strength due to a uniform
infinite cylindrical charge

Let us consider that electric charge is /\

uniformly distributed within an infinite cylinder \

of radius R

If gis the charge per unit length and p is the
volume charge density, then for a cylinder of
length h and radius R

7R*hp = gh

b (0

ﬂRZ
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Case (1) When point lies outside the charge

distribution i.e.r >R

Due to symmetry the electric field strength E, is every where normal to the

curved surface

Further E, being parallel to two flat bases of
the cylindrical surface considered, the
contribution to electric flux due to circular
surfaces is zero.

.. Electric flux through the cylindrical surface
assumed

IE-dS:IEOdlerIEOdSZ+IE0d83

onds=O+O+ond53<:osOO

IE-dS:EOIdS3:EO-2ﬂrh
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According to Gauss’s theorem

[Eods= Qe

&0
EO-ZﬂThZ%
€9

£, = 1 .2q
Are, I

Thus the electric field strength due to a uniform infinite
cylindrical charge at any point outside the charge distribution
IS same as that due to an infinite line charge.



Case (1) When point lies on the surface of charge

distributioni.e.r = R

In this case according to Gauss’s theorem

[Eods = Qe

&g

£, .27Rh =N
€9

E = 1 2q
Are, R

e —— T ————
—— -

~ _

o ———
——

-

~ _
S~ —_
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Case (1) When point lies inside the charge

distributioni.e.r <R

According to Gauss’s theorem

[Eods = Qe

€0
2
E. -27nrh= o
€
arhp 1 2qr

n " g, - 2nrh ] dne, R?

E. ocr

In
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The variation of electric field strength E with the distance
r from the axis of the uniform infinite cylindrical charge
distribution
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Electric field strength due to an infinite
non-conducting flat sheet of charge

» Let us now consider portion
of nonconducting ( )
sheet of charge having a
charge density o (charge per

unit area)
» Consider an imaginary

cylindrical Gaussian surface
inserted into sheet
» The charge enclosed by the
surface 1s
»Due to symmetry electric field strength E is normal outwards at

the points on the two plane surfaces and parallel to the curved
surface. %0



» There 1s no tlux from the curved surface of the cylindrical

» There is equal flux out of both end caps

-. Total electric flux = EA + EA = 2EA

According to Gauss theorem

§ EedA= Qencl E ; E
Lo - = )
1 = |1 =74
2EA=—"—(cA) E = i
&o : :
E-_9
2¢,

Thus electric field strength due to an infinite flat sheet of chgrge
IS Independent of the distance.



Electric field strength just outside a

charged conductor
Consider a small Gaussian cylindrical box as drawn in fig.

Let the surface charge density on the surface of the conductor be o
Let the area of each base is --- a

I.:'.'.l.'
The Electric field inside the conductor is zero ; .ai
Y Sl
Total electric flux ‘
i | -
p tOS :
Eds—jE ds+Eds+IE o ds, .
J g ~ds,
S 52 :
(E o ds_jE ods, = Eds cosOO jEds &, E =
.S S]_ ! ) + L & ;
= Ea

Charge enclosed by the cylinder Q ., = c.a 92



According to Gauss theorem

fE ods, = Qe

&0
Ea=--—(ca)
&0
-_o
&0

The electric field strength at any point close o the surface of a
charged conductor of any shape is equal to 1/, times the

surface charge density o o5



