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Outline of the Course

1. Electromagnetic Theory

2. Thermodynamics

3. Quantum Mechanics

4. Solid State Physics or Condensed Matter Physics
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Electromagnetic Theory

• Fundamentals of Vector Calculus which include, fields, gradient, divergence

and curl

• Coulomb’s law, electric flux and, Gauss’s law, its proof for the charge inside

and outside the Gaussian surface, applications of Gauss law for spherically and

cylindrically symmetric problems

• Electric field due to charged conductor, force per unit area on the surface of the

charged conductor, treatment of electrostatic problems by solution of laplace

and poisson’s equations

• Biot-Savart law, Ampere’s law, Maxwell’s equations (derivations) in free space

and dielectric media
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Electromagnetic Theory continued · · ·

• Plane electromagnetic waves in free space, transverse nature, wave

impedance and energy flow

• Energy in electromagnetic waves (Poynting vector and Poynting theorem)

• Derivations of expressions for energy density and energy flux (Poynting

vector) in an electromagnetic field, radiation pressure, boundary conditions

across the medium (without proof)

• Propagation of EM waves (i.e., light) through boundary- reflection,

refraction, absorption (normal incidence), oblique incidence and total

internal reflection.
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Thermodynamics

• Review of thermodynamical systems and processes, zeroth law of

thermodynamics, first law of thermodynamics

• Specific heat relation, isothermal, adiabatic, isochoric and isobaric processes, gas

equation during an adiabatic process, slopes of adiabatic and isothermals

• Work done during an isothermal and adiabatic process, relation between adiabatic

and isothermal elasticities, second law of thermodynamics, concept of entropy,

calculation of entropy for an ideal gas (pressure volume and temperature),

principle of increase of entropy or degradation of energy

• Reversible and irreversible processes, Carnot cycle and Carnot engine,

refrigerator, rankine cycle (Steam engine), Otto cycle(Petrol engine), diesel

engine, phase transitions, Clausius-Cleyperon equation

• Thermodynamic Potentials( Internal energy, Enthalpy, Helmholtz free energy,

Gibb’s free energy, Maxwell’s equations 5



Quantum Mechanics

• Wave particle duality, de-Broglie concept of matter waves, wavelength

expression for different cases, Davisson & Germer experiment, G.P. Thomson

experiment, interpretation of Bohr’s quantization rule, concept of wave packet

• Phase and group velocities and their derivations for a matter wave, Heisenberg

uncertainty principle. experimental illustration (Position of a particle by high

power Microscope, Diffraction of electron beam by a single slit), applications

of uncertainty principle (Non existence of electron in the nucleus)

• Radius of the Bohr’s first orbit, zero point energy of harmonic oscillator, finite

width of spectral lines
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Quantum Mechanics continued · · ·

• Time-independent and time-dependent Schr¨odinger wave equation,

physical significance of wave function.

• Normalized and orthogonal wave functions, operators and their

representation, expectation value

• Particle in one dimensional box, extension to 3-dimensional box, potential

barrier and harmonic oscillator
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Solid State Physics

• Lattice points and space lattice, Basis and crystal structure, unit cell and

primitive cell, seven crystal systems and fourteen Bravais space lattice,

coordination number, nearest neighbor distance, atomic radius, atomic packing

factor in crystal structure, calculation of lattice constant, lattice planes and

Miller indices

• Separation between lattice planes, derivation and examples, X-ray diffraction,

Bragg’s law of X-ray diffraction, Bragg’s X-ray spectrometer, powder crystal

method, rotating crystal method, basic ideas of bonding

• Bonding in solids
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Solid State Physics continued · · ·

• Electronic conduction in metals, classical free electron theory, quantum theory

of free electrons, band theory of solids, Kronig-Penny model and its

interpretation

• Brillouin zones, distinction between metals, semiconductors and insulators,

intrinsic and extrinsic semiconductors

• Carrier concentration in thermal equilibrium in intrinsic semiconductor, Fermi

level and energy band diagram in intrinsic semiconductor, energy band diagram

and Fermi level in extrinsic semiconductors, effect of temperature on extrinsic

semiconductor

• Electrical conductivity of intrinsic semiconductor and extrinsic semiconductor,

Hall effect, allied parameters and its applications
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Books Recommended
Electromagnetic Theory

• Introduction to Electrodynamics By: David J. Griffiths

• Schaum’s Outline of Theory and Problems of Electromagnetics

• Classical Electrodynamics By: J.D. Jackson

Thermodynamics

• Heat and Thermodynamics: Mark Waldo Zemansky, Richard Dittman

Quantum Mechanics

• Perspectives of Modern Physics, or Concepts of Modern Physics, By: Arthur Beiser

• Schaum’s Outline of Theory and Problems of Quantum Mechanics

• Quantum Mechanics By: L.I. Schiff

Solid State Physics

• Perspectives of Modern Physics, or Concepts of Modern Physics, By: Arthur Beiser

• Introduction to Solid State Physics, By: Charles Kittel
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Electromagnetism

Thermodynamics

Elements of Quantum Mechanics

Solid State Physics

Test details

½ part

T1 
[01 hr (15%)]

T2 
[1 hr 30 min (25%)]

T3
[02 hr (35%)]

Home assignments, - 10%;       Tutorials & Regularity -10%;       Attendance - 05%

[80-82:01 marks; 83-85: 02 marks; 86-88: 03 marks; 89: 04 marks; 90 and above: 05 marks]
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Vectors are denoted as a symbol with an arrow over the Top and Bold font

I    I = Magnitude of vector 

13



Where    

Ax – Magnitude of Ā in x direction

Ay – Magnitude of Ā in y direction

Az – Magnitude of Ā in z direction

Modulus or Magnitude of Ā is given by

I     I = Ax
2 + Ay

2 +Az
2

=  Ax âx+ Ay ây+ Az âz
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The unit vector in the Direction of Vector     is represented 
by

â =         / |   |

For All unit vectors 

* Magnitude is Unity

* Provide only Direction

UNIT VECTORS
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•Vector multiplied by a scalar yielding a vector output

•Vector multiplied by a vector yielding a scalar output (Dot product)

• Vector multiplied by a vector yielding a vector output (Cross product)
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I
The result of vector and scalar is a vector!

Let  Ā is multiplied by Scalar k     Then magnitude becomes k times of the Ā

AkB 

k > 0

k < 0

1 < k 

0 < k  < 1 

+ ve same direction

-ve opposite direction

Magnitude increases 

Magnitude decreases 
19



 is an acute angle between the vectors

If  = 0 then dot product

If  = 900 then dot product

0
Properties 

II:
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Properties

zyx

zyx

BBB
AAABA
zyx 



III:
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Vector Derivatives

Second derivatives:
The Laplacian (2) and its relatives

First derivatives:
Gradient ()
Divergence ()
Curl ()
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Differential Vector Operator

The vector derivative operator  (“del”)


  x 

x
 y 

y
 z 

z
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Differential Vector Operator (cont.)
There are three kinds of vector derivatives, corresponding to 
the three kind of multiplications possible with vectors:

 Gradient, the analogue of multiplication by a scalar.

 A

 Divergence, the analogue of the scalar (dot) product.

 •

 Curl, the analogue to the vector (cross) product.

 
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The Gradient

The result of applying the del-operator on a scalar function A 
is called the gradient of A:

zyx 
























zyx
AA








 AA
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Examples

temperature  = Magnitude
 = Magnitude and direction

• Let V represent the potential function then V will 
represent the rate of change of potential with distance.

V = Ē

• If the scalar function φ represents the temperature, Then,  = grad 
 is temperature gradient or rate of change of temperature with 
distance

27



Ex.1 Given a potential function V = 2x2 + 4y V in free space find        
the electric field at the origin.

Ē =   V































 zyx 

zyx
V








 VVE

 yxx  44 E V/m

At origin
Ē = - 4 ŷ  V/m
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The Divergence
The scalar product of the del-operator and a vector function 
is called the divergence of the vector function:

 
z
A

y
A

x
AA

x
A zyx

z 

























 zy+ xzy+x 

yx A A
zy

The divergence of a vector function is a scalar!

What is the divergence? Roughly speaking, the divergence is 
a measure of how fast the field lines stretch and/or spread out.

If two objects following the direction specified by the vector 
function increase their separation, the divergence of the vector 
function is positive. If their separation decreases, the divergence 
is negative.
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Ex.2. Electric field density

 yy x0xyz  251 xD 

Calculate charge density at (1,1,1)

 . D = v

Dv 





























 zyx 

zyx 








Dyxxyz 





















 2510

yx 



 = 10 yz + 5 x2

At (1,1,1)    = 15 c/m3       Diverge
At (0,0,0)    = 0 c/m3         neither diverge nor converge
At (1,-1,1)   = - 5c/m3 Converge

30



The Curl
The curl of a vector function A is

zyx

zyx



















 










y
A

x
A

x
A

z
A

z
A

y
A

AAA
zyx

A xyzxyz

zyx




























The curl of a vector function A is a vector. 

Roughly speaking, the curl is a measure of how fast the field-
lines of a vector field twist or bend in a direction set by the right-
hand rule It is also denote the rate of rotation of field vector at 
particular point.
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This function has a + ve curl so  rotation will be anticlockwise.

z y x 















 










y
A

x
A

x
A

z
A

z
A

y
AA xyzxyz



















z2 A

The  rotation will always be anticlockwise when the  x      is + ve

The rotation will always be clockwise when the  x     is  ve

There is no rotation is   x       is = 0

Ex. 3. Given  .y xy  xA  Find the curl A ?
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Physical Interpretation

Gradient : Maximum space rate change

Divergence :
Rate of separation diverging or converging field

Curl :  Rotation of field
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Different Coordinate Systems

• Cartesian (Rectangular) Coordinate System

• Cylindrical Coordinate System

• Spherical Coordinate System
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Cartesian Coordinate System

Coordinates , ,x y z

z

x

y

P ( x, y, z )
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• A point is also defined by the intersection of      
three orthogonal surfaces.

• In cartesian coordinates the surfaces are the 
infinite planes x= const., y=cants. And z=const.

x
y
z

 
 
 

Limits

Unit vectors have fixed directions, independent of the location of point P

Cartesian Coordinate System (cont.)
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Differential Volume, Surface and Line elements

Differential elements  - dx, dy, dz

Volume dV = dx dy dz

Area 
x const.  dA1 = dy dz
y const.  dA2 = dx dz
z const.  dA3 = dx dy

Differential line elements
dl2 = dx2 + dy2 +  dz2

Cartesian coordinates system

P
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Cylindrical Coordinate System

, ,r zCoordinates

x

y

z



P (r,,z)

r

z

• r is the distance from the z axis in a plane normal to the z axis

• is the angle between the x axis and the projection of point P on the xy plane

• z is the height of the cylinder 38



Cylindrical Coordinate System (cont.)

0
0 2

r

z
 

 
 

 

Limits

• z = const. is the infinite plane
•  = const. is a half plane with its edge along the z axis
• r = const. is a right circular cylinder

Each unit vector is normal to its coordinates surface and is in the direction in which the 
coordinate increases
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Cylindrical Coordinate System

Differential elements  - dr ,   rd ,   dz

Volume dV = r dr d dz

Areas 
dr const.  dA1 = rd dz
d const.  dA2 = dr dz
dz const.  dA3 = rd dr

Differential line elements

dl2 = dr2 + rd2 +  dz2

Differential Volume, Surface and Line elements

r

z

r
dr
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Use cylindrical coordinates to find the area of the curved 
surface of a right circular cylinder of radius a and height h 

The differential surface element is dA = rd dz

Then  
h

dzrdA
0

2

0





ahdzdaA
h




2
0

2

0

  

  
a h

dzrdrdV
0 0

2

0





haV 2

Example : 4
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Spherical Coordinate System

Coordinates

y

z

x




r

P ( r, ,  )

r,,

• r is the distance from origin to the point

•  is the angle between the x axis and the projection of point P on the xy plane

•  is the acute angle formed from z axis to the OP 
42



•  = const. is a half plane with its edge along the z axis
• r = conts. is a sphere with center at origin
•  = const. is a right circular cone whose axis is the z axis and whose
vertex  is at the origin

Limits

Spherical Coordinate System (cont)

P
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Spherical Coordinate System

Differential elements  - dr, rd, rsin d

Volume dV = r2 sin dr d d

Areas:  const.  dA1 = r d dr

r const.  dA2 = r2 sin d d

 const.  dA3 = r sin dr d

Differential line elements

dl2 = dr2 + (r d) 2 + (r sin d) 2

Differential Volume, Surface and Line elements
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Example 5

The differential surface element is ds = r2sind d
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Component forms of vector in the three 
systems

Cartesian coordinate system

Ā = Axâx+ Ayây+Azâz

Cylindrical coordinate system

Ā = Arâr+ Aâ+Azâz

Spherical coordinate system

Ā = Arâr +Aâ + Aâ
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     
z
AAA

r
A

r
AA zr 











      ,1     ,

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Vector Operation - Spherical Coordinate System 

   









 













A
r

aA
r

a
r
Ar

r
aA r

r sin
1sin

sin
11 2

2

         































































rr

r
A

r
rA

r
a

r
rAA

r
aAA

r
aA 1

sin
11sin

sin
1

     
  












r

AAA
r

A
r
AA r      ,

sin
1     ,
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Gauss Divergence Theorem

The flux of a vector field     on any closed surface S is equal to the 
volume integral of the divergence of that vector field over that volume 
enclosed by that surface.

50



Example 6
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Stokes’ Theorem

The surface integral of the curl of a vector field Ā taken over any 
surface is equal to the line integral of Ā around the closed periphery of 
the surface
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For r = constant    dr = 0




dr cossin18 23.0

0

2

Example 7

= (                                  ).
 drdrr cossin18sin6 22 

[                                      ]
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         































































rr

r
A

r
rA

r
a

r
rAA

r
aAA

r
aA 1

sin
11sin

sin
1
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Force is attractive if charges are opposite sign & repulsive if same.

Coulomb's Law

122
21

0
12 4

1 r
r
qqF 



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Example 8

Two point charges Q1 = 50 c and Q2 = 10 c located at (-1,1,-3) m in 
(3,1,0) m respectively. Find the force on Q1

212
21

0
1 4

1 r
r
qqF 




r = - 4ax -3az
5

3a- -4a zxr

  
 

  NaaaaF zx
zx 6.08.018.

5
34

5
36
104

101050
2

9

56

1 





 



















 NaaF zx 108.0144.01 
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* Flux is a measure of the number of field lines passing through an 
area

* Electric flux is the number of Electric field lines penetrating a 
surface    or an area. 

AEA)cosE(Flux Electric




Total Electric flux passing through the total 
surface

Electric field lines passing through a 
surface of area A, whose normal makes 
an angle  with the field.
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AEA)cosE(Flux Electric




Ē || Ā   = 0
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Electric field lines passing through a surface of area A whose normal 
makes an angle  with the field.

Ē И Ā    0

A׳ = A cos 
Where A ׳ is the perpendicular area 
to the field  E

The value of electric flux is +ve if lines of forces are diverging
The value of electric flux is -ve if lines of forces are converging63



Example 9
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The total “flux” of field lines penetrating any of
these surfaces is the same and depends only
on the amount of charge inside

Gauss’s Law – The Idea
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Gauss’s Law – The Equation

Electric flux E  (the surface integral of E over 
closed surface S) is proportional to charge 
inside the volume enclosed by S
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 Case 1: Single positive charge inside closed surface

Let a point charge q is placed in the closed surface 

Consider a small area dA of the surface. Then the 
electric flux passing through surface area dA 
whose normal makes an angle  with the field

+

E



dA

cosdA
surface perpendicular
to E



+

q

E


dA

o

Proof of Gauss’s Theorem
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By definition solid angle subtended by a area dA at point O 

  









area
radius
surfaced 2

2

cos
r

dAd  




dqd E
04



dAEd E cos

Then the electric flux passing through surface area dA whose normal 
makes an angle  with the field

------- (1)

dA
r

qd E 


cos
4 2

0

 ------- (2)

Therefore eq 2 reduces to

+

cosdA

d

r
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Hence the electric flux through whole of the closed surface 

 


dq
E

04
( Solid angle subtended by 
the entire closed surface at an 
internal point O is 4 )




4
4 0


q

E

0
q

E 

Hence the total electric flux through any closed surface is equal to 1/0 
times of total charge enclosed within the surface which is Gauss law.

 
0

qAdEE


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Gauss’s Law

Electric field lines that go in come out.
Electric field lines can begin or end inside
a region of space only when there is charge
in that region.

 Case 2: Single positive charge outside closed surface

q
+

dA1

dA2

Electric flux through area dA2

Electric flux through area dA1

Total electric flux through a closed surface




dqd A
041

 ---(1)




dqd A
042

 ---(2)

21 AA ddd  ---(3)
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0E









 





dqdqd

00 44

Putting the value of dA1 and dA2 from equation (1) and (2) in eq (3) 

As there is no charge within the surface, the total electric 
flux through the whole surface is zero
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Applications of gauss’s theorem
(a) Cases of spherical symmetry

(i) Field due to point charge

Charge enclosed by surface Qencl = q

By Gauss theorem

ĒP1O
+

q

Electric flux through the spherical surface 

•Electric field E at each point of surface is 
same & directed outward
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(ii) Electric Field due to a charged spherical shell
Case(i) Electric Field outside the shell

P1

Ēo

•Spherical shell of radius r0, carrying a charge Q with centre O

•Electic field Eo at each point of surface is same & directed 
outward
•Let the electric field at the surface be Eo
•Net Electric flux through the whole surface 

By Gauss theo
rem

Hence the electric field strength at any pt outside a charged spherical shell is same 
as through the charge were placed at the centre O.

Charge enclosed by surface Qencl = Q

r+

O r0

+
+

+
+

+ + + +
+
+
+

+
++

•Imagine a spherical shell of radius r concentric with the shell
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Case(ii) Electric Field inside the shell (r < r0 )
If  Ei is the electric field inside the shell, then by symmetry Ei is same at each 
point of spherical surface and is directed outward

Net charge enclosed by spherical surface Qencl= 0

By Gauss theorem

Thus electric field strength at each point within the shell is zero

+
O r0

P1

+

+

+
+ +

+
+

+ + + + +
+
+
+
+

+
+++ +
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(ii) Electric Field due to a spherically charge distribution
Case(i) Electric Field strength at an external point

•Spherical charge distribution of radius r0, carrying a charge Q with centre O

•Electic field Eo at each point of surface is same & directed 
outward
•Let the electric field at the surface be Eo
•Net Electric flux through the whole surface 

By Gauss theorem the total charge enclosed by the spherical 
surface = Q

Hence the electric field strength at any pt outside a spherical charge distribution is 
the  same as through the whole charge were concentrated at the center. 

Qencl = Q

r

P

Ēo

+

O r0

+
+
+

+ + + +
+
+
+

+
+

++
+ +

++
+

++
+++

+
+
+ +++

+

+ O r0+

+

+ + + +
++ +
+

+
+

+
++
+

+

+
+ +

+
+

Ei  1/r2

•Imagine a spherical surface of radius r concentric with the spherical charge
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P

++
+ +

++

+
+ +

+++

+
+
+ +++

+

+
O r0+

+

+
+ + +

++ +
+

+
+

+

++ +

+

+
+ +

+
+

Case(ii) Electric Field strength on the surface of the spherical charge distribution

(2) r = r0

By Gauss theorem the total charge enclosed by the spherical 
surface = Q

•In this case the distance of point P from the center of the charge distribution is equal 
to its radius

•Electric flux through the whole surface 

Electric Field strength on the surface of the spherical charge distribution

Ei  1/ r0
2

r

78



++
+ +

++

+
+ +

+++

+
+
+ +++

+

+
O

r

r0

P1

+

+

+
+ + +

++ +
+

+
+

+

++ +

+

+
+ +

+
+

Case(iii) Electric Field strength inside the charge distribution

(3) r < r0
Consider a spherical surface of radius r concentric with spherical charge
Let  be the volume charge density (charge per unit volume) of uniform distribution of 
spherical charge 

•Total electric flux through the whole surface 

Net charge enclosed by the Gaussian surface  =  3

3
4 r

By Gauss theorem


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Ei  r

The variation of electric field 
strength with the distance 
from the center of spherical 
symmetric charge distribution
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(iii) Electric Field due to a concentric spherical shells
Two concentric spherical shell of radii r01 and r02 meters bearing charges Q1 and Q2

(a) Field inside the inner shell r < r01

o
P1 P2 P3

Q1

Q2

r01

r02

r

Charge inside the shell of radius r is zero

E = 0

 Electric field intensity at P1

(b) Field between the shells r01 < r < r02

Charge inside the shell of radius r is Q1

 Electric field intensity at P2

(c) Field outside both shells r > r02
Charge inside the shell of radius r is Q1 + Q2

 Electric field intensity at P3 81



(b) Cases of cylindrical symmetry
(i) Electric Field strength due to infinite line charge

 There are three surfaces to consider. The There are three surfaces to consider. The upper (supper (s11) and ) and 
lower(slower(s22) circular surfaces) circular surfaces have normals are perpendicular have normals are perpendicular 
to the electric field, thus to the electric field, thus contribute zero to the fluxcontribute zero to the flux..

P

s1

s2

s3

ds
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Thus the electric field strength is inversely proportional to r.

The electric flux due to each plane faces 

The electric flux due to curved surface
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(ii) Electric Field strength due to a uniform 
infinite cylindrical charge
Let us consider that electric charge is 
uniformly distributed within an infinite cylinder 
of radius R
If  q is the charge per unit length and  is the 
volume charge density, then for a cylinder of 
length h and radius R

2R
q


 

h

R

qhhR  2
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Case (i) When point lies outside the charge 
distribution i.e. r >R
Due to symmetry the electric field strength Eo is every where normal to the 
curved surface 
Further E0 being parallel to two flat bases of 
the cylindrical surface considered, the 
contribution to electric flux due   to circular circular 
surfacessurfaces is zero.

 Electric flux through the cylindrical surface 
assumed

 
321

321
ssss

dsEdsEdsEdsE

0
30 0cos00

3

 
ss

dsEdsE

rhEdsEdsE
s

2030  

h

R

r

P1

Ē0

ds1

ds2
ds3

Qencl = qh85



According to Gauss’s theorem

0

.


enc

s

QdsE 

0
0 2


 qhrhE 

r
qE 2

4
1

0
0 



Thus the electric field strength due to a uniform infinite 
cylindrical charge at any point outside the charge distribution 
is same as that due to an infinite line charge.
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Case (i) When point lies on the surface of charge 
distribution i.e. r = R

h

R

r

P2

Ē0

In this case according to Gauss’s theorem

0

.


enc

s

QdsE 

0

2


 qhRhEs 

R
qEs

2
4

1

0



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Case (i) When point lies inside the charge 
distribution i.e. r < R

h

R

r

P3

Ē0

0

.


enc

s

QdsE 

0

2

2




hrrhEin 

According to Gauss’s theorem

2
00

2 2
4

1
2 R

qr
rh

hrEin 







rEin 

hr
q

2
  88



The variation of electric field strength E  with the distance 
r from the axis of the uniform infinite cylindrical charge  
distribution
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Due to symmetry electric field strength E is normal outwards at 
the points on the two plane surfaces and parallel to the curved 
surface.

Electric field strength  due to an infinite 
non-conducting flat sheet of charge
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There is equal flux out of both end caps

 Total electric flux = EA + EA = 2EA

According to Gauss theorem

 AEA 
0

12 

0
enclQdAE 

02


E

Thus electric field strength due to an infinite flat sheet of charge 
is independent of the distance.

91



Electric field strength  just outside a 
charged conductor

Consider a small Gaussian cylindrical box as drawn in fig.

The Electric field inside the conductor is zero

Let the area of each base is  --- a

P ds1

ds2

ds3

 
321

321
ssss

dsEdsEdsEdsE

 
111

1
0

11 0cos
ssss

EdsEdsdsEdsE

Total electric flux

Ea

Let the surface charge density on the surface of the conductor be 

Charge enclosed by the cylinder Q encl = .a 92



0
1 

enclQdsE 

 aaE 
 0

1. 

According to Gauss theorem

0


E

The electric field strength at any point close o the surface of a 
charged conductor of any shape is equal to 1/0 times the 
surface charge density 
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