
9/17/2014 CS322: Deadlock

http://hamilton.nuigalway.ie/teaching/AOS/FIVE/deadlock.html 1/9

Deadlock

Introduction

We now want to abstract the concept of deadlock, and apply it to all resources that a computer system may

have. We will see that in some cases the resources can be shared without any chance of deadlock. However, in

other cases it is possible for several processes to be waiting for resources that they will never be able to allocate.

Resources

For the purposes of our discussion a resource is an object that a process makes use of. A resource can be a

piece of hardware such as

tape drive

disk drive

printer

etc.

or a piece of information such as

a file

a record within a file
a shared variable

a critical section

etc.

A computer typically has many different resources. In some cases there may be many instances of a resource of

a given type (e.g. buffers), all of which are equivalent. A process needing one of these resources can use any one

of them. In other cases there may be only one instance of a resource (e.g. CD-ROM drive with a particular CD).

Resources come in two flavors: preemptable and nonpreemptable. A preemptable resource is one which can

be allocated to a given process for a period of time, then be allocated to another process and then be reallocated
to the first process without any ill effects. Examples of preemptable resources include

memory

buffers

CPU

array processor

etc.

A nonpreemptable resource cannot be taken from one process and given to another without side effects. One

obvious example is a printer: certainly we would not want to take the printer away from one process and give it

to another in the middle of a print job. (Actually, the THE operating system treated printers as preemptable

resources -- the operators would have to sort the printed output to reassemble print jobs.)

As we shall see, deadlocks usually involve nonpreemptable resources. The usual sequence of events that occur

9/17/2014 CS322: Deadlock

http://hamilton.nuigalway.ie/teaching/AOS/FIVE/deadlock.html 2/9

as a resource is used is

1. Request the resource. One of two things can happen when a resource is requested: the request can be

granted immediately (if the resource is available) or it can be postponed (or blocked) until a later time.

2. Use the resource. Once the resource has been acquired, it can be used.

3. Release the resource. When the process no longer needs the resource it releases it. Usually it is

released as soon as possible but in most systems there is nothing to enforce this policy.

Definition

Tanenbaum and Woodhull define deadlock as:

A set of processes is deadlocked if each process in the set is waiting for an event that only another

process in the set can cause.

Notice that it is possible for a single process to become deadlocked if it is waiting for an event that only it can

cause. However, it is usually the case that one process is waiting for a resource that is held by another process. If

the other process is itself waiting for a resource held by the first then deadlock occurs.

Note that deadlock is different from starvation. Starvation is the problem that occurs when a process is waiting
for a resource that is allocated to other processes, released, and then allocated again to some process other than
the one that is starving.

Conditions for Deadlock

In 1971 Coffman et al. showed that four conditions must hold in order for deadlock to occur:

1. Mutual exclusions: Each resource can be assigned to only one process at a time and is either assigned

or available.

2. Hold and wait: Processes that currently hold resources can request and wait for additional resources.

3. No preemption: Resources previously granted cannot be taken away from the processes that hold them;
they must be released by the holding process.

4. Circular wait: There must be a circular chain of two or more processes, each waiting for a resource held

by the previous member of the chain.

All four of these conditions must hold in order for deadlock to occur.

Diagramming Deadlocks

We can use a directed graph called a resource-allocation graph to characterize a deadlock situation.

Vertices represent resources and processes. We will use rectangular vertices to represent resource

9/17/2014 CS322: Deadlock

http://hamilton.nuigalway.ie/teaching/AOS/FIVE/deadlock.html 3/9

classes, with dots within the vertex to represent instances of the resource. Circular vertices will be used
for processes.

A directed edge from a process vertex to a resource vertex indicates that the process has requested an
instance of the resource. This is called a request edge.

A directed edge from a dot within a resource vertex (an instance of the resource) to a process vertex

indicates that the resource has been allocated to the process. This is called a assignment edge

For example, consider the following graph:

In this example the class represented by R1 has three instances of the resource associated with it. P1 and P2
each have allocated an instance of a resource of type R1. P2 has requested an instance of resource type R2, but

is waiting since the only instance is held by P3. P3 is in turn requesting a resource of type R3 but the only
instance of that type is held by P2. The situation depicted in this graph is deadlocked. P2 is waiting for a

resource held by P3, and P3 is waiting for a resource held by P2. This can be shown to be a cycle with

P2 -> R2 -> P3 -> R3 -> P2

Now consider the graph

This is just the same as the case before except now there are two instances of resource type R3. Both are
currently allocated so that P2 and P3 are waiting just as before. This graph also has the cycle

P2 -> R2 -> P3 -> R3 -> P2

However, this is not a deadlock situation. As soon as P4 finishes with it's instance of R3 it will release it and P3
can allocate it. Even though there is a cycle, this situation does not meet the circular wait criterion for deadlock to

occur: there is an instance of a requested resource that is not held by a process in the cycle (P4 holding an

instance of R3).

Ways we can deal with Deadlock

9/17/2014 CS322: Deadlock

http://hamilton.nuigalway.ie/teaching/AOS/FIVE/deadlock.html 4/9

There are four different approaches to dealing with the deadlock problem:

1. Ignore the problem
2. Detect deadlock when it occurs, and recover from it

3. Prevent deadlock from occurring

4. Dynamically avoiding deadlock

Ignore the Deadlock Problem

This is the approach taken by most operating systems. In fact, this is really an instance of the second approach:

deadlock detection and recovery. This is because a human operator will often notice the deadlocked condition
(detection) and kill the offending process(es) or restart the system (recovery). The implicit assumption here is that

deadlock is unlikely to occur, and when it does it is relatively easy (and inexpensive) to recover from.

This is not quite as bad as it sounds. As we will see, handing the deadlock problem is complicated and is often

inconvenient. If it is the case that a given system is likely to suffer from deadlock infrequently (once a week, once

a month, etc.) but for other reasons it is restarted at least that frequently (e.g., it is restarted every morning) then

it's probably not worth much effort to worry about deadlock.

Another consideration is exactly what types of processes are suffering from deadlock. If user processes are

likely to be the only processes that become deadlocked, and they can be killed and restarted easily, then

deadlock detection, avoidance or prevention is not mandatory. However, if it is kernel processes that are
becoming deadlocked, so that the system is unusable, then it is probably worth some effort to eliminate the

deadlock problem.

Deadlock Prevention

1. Conceptually, the cleanest way to deal with deadlock is to prevent it by insuring that one of the conditions

for deadlock does not hold. In practice, however, deadlock prevention schemes impose restrictions that

may not be tolerable - so working systems often combine deadlock prevention for some resources with

one of the other two schemes for others.

2. Theoretically, deadlock can be prevented by denying the mutual exclusion precondition. This is

usually not possible in practice, though the use of spooling to convert serially reusable devices into

seemingly shareable virtual devices could be regarded as an attack at this point. (We could also regard it
as a multiplication of the number of printers to the point where each process can have all it needs.)

3. Deadlock can be prevented by denying the hold and wait precondition.

A. One approach is as follows: Require that a process request all the resources that it needs in one

single request at process startup. The system will not grant any resource in the list until it can grant

all of them.

B. A less restrictive approach is to allow a process to request resources only when it is currently

holding no resources. Thus, if a process needs a new resource, it must first yield all the resources it

has and then put in its request (which might include a request for the reallocation of a resource it just
gave up.)

9/17/2014 CS322: Deadlock

http://hamilton.nuigalway.ie/teaching/AOS/FIVE/deadlock.html 5/9

C. Problems with this approach:

a. It can lead to processes holding resources when they don't need them, thus reducing
resource utilization. This is especially serious if a process does not know what resources it

will actually need for a given run until it has started working on the data. With this scheme, it

must request up front all the resources it might need.

b. A process that needs several popular resources might starve while processes that need a

smaller number of these resources keep taking them away.

4. Deadlock can be prevented by denying the no preemption precondition.

A. One way to implement this is to stipulate that any process that is forced to wait for some resource

will have any resources it already possesses taken away from it. The wait for a single resource is

then converted into a wait for a list of resources including both those it had and the one it now
needs.

Example: A process holds a tape drive and requests a line printer. If a line printer is not available,
the tape drive is taken away and the process is put into a state of waiting for both a tape drive and

a line printer.

B. Again, this can be made somewhat less severe. A process that is waiting for some resource can
hold them as long as another process does not need them. But if another process should request a

resource held by the waiting process, the resource is preempted and the waiting process must now

wait for both the original resource it wanted and the resource that was taken away.

C. This scheme also has problems:

a. It only works if the resources are preemptible. If a process has printed output on a line

printer and is waiting for some other resource before it can generate more output, then the
line printer really cannot be taken away without messing up the output. (This assumes the

approach used by the THE system is not practical, as it often is not.)

b. This scheme can also lead to starvation for a process that needs several popular resources at
the same time, since it may keep losing the resources it gets because they don't all become

available at the same time.

5. Deadlock can be prevented by making circular wait impossible.

A. The basic approach in this scheme relies on resource ordering. With each unique type of resource

(printer, tape etc.) we associate a unique number. For example, card readers might be assigned

number 1, tapes number 2, and printers number 3. We require that a process request resources in
increasing order of resource number; i.e. all of its requests for readers must precede any request for

tapes or printers; and any request for tapes must precede any request for printers. Further, if it

requests multiple resources of the same type it must request them all at once; it cannot ask for a
second tape after previously requesting a tape.

B. This restriction can be loosened; if a process releases all the high-numbered resources it holds it

9/17/2014 CS322: Deadlock

http://hamilton.nuigalway.ie/teaching/AOS/FIVE/deadlock.html 6/9

may be allowed to request a lower-numbered resource. It still cannot request a resource of a given

type if it already holds one or more resources of that type. That is, the number of the resource it

requests must be strictly greater than the number of any it holds.

Example: a process requests a reader and a printer (in that order). Ordinarily, it would not now be

eligible to request any other resources. But if it releases the printer (so it only holds a reader), it may

be allowed to request any number of tapes (in a single request) or any number of printers (in a
single request) or both (in the order first tapes, then printers.)

C. To see that this protocol does, in fact, make circular wait impossible, we use a proof by
contradiction:

Assume that the resource ordering protocol is being used, and a circular wait has resulted. This

means that we have a process P0 waiting on a resource held by P1, and P1 is waiting on a
resource held by P2, etc.

a. Let R0 be the resource held by P0 which PN is waiting for, R1 be the resource held by P1

that P0 is waiting for.

b. Let F0 be the number associated with resource R0, F1 be the number associated with R1

etc.

c. Now since P0 is waiting for a resource R1 while holding a resource R0, it must be the case

that F0 < F1. In like manner, F1 < F2, etc. So we have F0 < F1 < F2 ... < FN, and

therefore, by transitivity, F0 < FN.

d. But we also have process PN requesting a resource R0 held by P0, while holding a resource

RN. Therefore, it must be that F0 > FN. Since this is a contradiction, our assumption that

circular wait could arise is false.

D. Of course, this scheme has problems too:

a. The order of resource numbering may prove arbitrary and inconvenient. This is not

necessarily too serious of a problem, since there are often natural ways of numbering

resources. For example, processes generally use input devices (such as card readers) before

output devices (such as printers). Tapes are often used for intermediate files that are created

by the input phase of processing and retained through the output phase; so the example

ordering above is not unreasonable.

b. The order of numbering can force processes to request resources before they need them,

thus reducing resource utilization. For example, with the above scheme a process that did

some scratch work on tape before reading input from a card reader would still have to

request the reader at the start of processing.

Deadlock Avoidance

1. One way to avoid deadlock in certain simple circumstances is by using resource trajectories. Assume

9/17/2014 CS322: Deadlock

http://hamilton.nuigalway.ie/teaching/AOS/FIVE/deadlock.html 7/9

that there are two processes P1 and P2 and they both need to use the printer and the plotter (a single

instance of each resource is available).

The horizontal and vertical axes represent the number of instructions executed by P1 and P2 respectively.
The dashed line is a resource trajectory; it shows when the scheduler ran each process P1 and P2.

Suppose that p is the initial situation and the u is the final point. Process P1 must pass lines 1, 2, 3, and 4

and process P2 must pass lines 5, 6, 7, and 8.

The shaded areas represent "impossible" regions; areas in which both processes hold one or both of the

non-shareable resources. Notice that the trajectory must either move right or up. To avoid deadlock, once

the trajectory is at t the scheduler must schedule process P1 to run until it passes line 4 before it lets
process P2 run again. This is because if we enter the box bounded by lines 1, 4, 5 and 8 the trajectory

must pass through one of the shaded "impossible" areas.

2. The best-known deadlock avoidance algorithm is the banker's algorithm (example transparency).

A. The advance knowledge required is the maximum number of units of each type of resource that the

process will claim at any one time.

a. This can be declared explicitly up front by the programmer; or it may be determined

implicitly from the job control cards in a batch environment.

b. Any process which requests an allocation beyond its pre-declared maximum will be aborted.

B. The OS maintains a vector and three matrices to keep track of actual and potential allocations:

Available: array[1..NoResourceTypes] of integer;
Max, Allocated, Need: array[1..NoProcesses, 1..NoResourceTypes] of integer;

9/17/2014 CS322: Deadlock

http://hamilton.nuigalway.ie/teaching/AOS/FIVE/deadlock.html 8/9

a. The vector Available records, for each class of resource, the number of units of that
resource currently available (i.e. not allocated to any process.)

b. The matrix Max contains one row per process and one column per class of resource. It

records the pre-declared maximum number of units of each class that the process has said it

might need.

c. The matrix Allocated is like Max. It records the number of units of each class of resource
currently allocated to each process.

d. The matrix Need is like Max. It records the number of additional units of each class of

resource that each process might need. Note that Need[i,j] = Max[i,j] -

Allocated[i,j], so only two of the three matrices need actually be stored.

C. We can model a request for new resources as a vector Request, in which each element represents

the number of additional units of some class of resource that the process is now requesting. When a
request comes in from some process p, the system handles it as follows:

a. If Need[p,j] < Request[j] for any j, then the process has made an illegal request and

must be aborted.

b. If Available[j] < Request[j] for any j, then the process must wait.

c. If neither of the above hold, then it is possible to grant the request, provided that the resultant
state is safe. To determine this, the OS pretends to grant the request and then checks the

resultant state for safety:

Deadlock Detection and Recovery

One way to detect deadlock is for the system to monitor the requests and releases of resources and to maintain

an up-to-date resource allocation graph. If this is done then it is possible to look for cycles in the graph (O(n2)

operations, where n is the number of vertices in the graph) and determine if they indicate that deadlock has

occurred.

It is possible to approximate this behavior by monitoring processes and after they are observed to have been

blocked for some predetermined period of time it is assumed that they are deadlocked.

Once deadlock is detected (or assumed to have been detected) some recovery action is necessary to break the

deadlock. Often this is done by killing and restarting one or more of the deadlocked processes. Note, however,

that any modifications to files or other data structures made by the processes that were terminated must be

undone or accounted for in some way.

$Id: deadlock.html,v 1.3 2000/02/27 15:17:51 senning Exp $

These notes are based in part on notes written by by R. Bjork of Gordon College and on the textbooks Operating
System Concepts by Silberschatz and Galvin, Addison-Wesley, 1998 and Operating Systems: Design and
Implementation by Tanenbaum and Woodhull, Prentice-Hall, 1997. Some material was gleaned from

9/17/2014 CS322: Deadlock

http://hamilton.nuigalway.ie/teaching/AOS/FIVE/deadlock.html 9/9

http://www.cm.cf.ac.uk/User/O.F.Rana/os/lectureos12/index.html.

